Multiplication of two matrices

Zeato
Messages
7
Reaction score
0
Hi, thank you for viewing this thread. My question is as follow:

Suppose A is a n x m matrix and B is a m x n matrix, and we also know that the matrix B has infinite solutions, then what will the solution/s of the matix product AB be? I am thinking that it might be a matrix of infinite solutions, but is there a proof to show this case?

Now suppose we let A be a n x m matrix with no solution, and the conditions for B in the previous paragraph still hold. Then what will the solution of the matrix product AB be in this case? Just wondering if there is a proof to illustrate this case again?
 
Physics news on Phys.org
What do you mean by a matrix with no solutions or infinite solutions? Are you referring to a matrix equation Ax=b, and solving for x?
 
I think the result that you need is

\operatorname{rank}(AB) \leq \min(\operatorname{rank}\,A, \operatorname{rank}\,B)

If \operatorname{rank}\,C < \operatorname{dim}\,C then the system of equations C\cdot x = b does not have a unique solution, but rather "infinite solutions" that span a space of dimension \operatorname{dim}\,C-\operatorname{rank}\,C.

Now let C = A\cdot B where B is not of maximal rank (as in your question) and you can work out the answer...
 
Hi, sorry for the confusion caused, actually what i meant is having matix B in the form Bx=0 and having infinite solutions, so will the multiplication of matrix A onto Bx=0, ABx=0,result in a product where there are infinite solutions as well, regardless of what A is? Is there a proof in showing it?

Now if we change the conditions to let the matrix A of the equation Ax=0 be a matrix with no solution, while the conditions for B still hold. So will the product ABx=0 changes anything as compared to the first question?

Erm,I have just started Linear Algebra and have not gone into rank/ vector spaces yet. Is the mentioned topic a prequsite to understanding/ proving this concept?
 
If Bv= 0 has an infinite number of solutions, then A(Bv)= A(0)= 0 for every such v and so ABv= 0 also has an infinite number of solutions. In fact, if A itself is singular, then there may exist MORE solution that just those such that B= 0.

Now, "Now suppose we let A be a n x m matrix with no solution", if you still mean Ax= 0, is impossible. That always has the solution x= 0.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top