Living_Dog
- 98
- 0
Let \vec{v} = r^{2} \hat{r}. Show that the divergence theorm is correct using 0 <= r <= R , 0 <= \theta <= \pi , and 0 <= \phi <= 2\pi.
$ \int \nabla \cdot \vec{v} d \tau = \int \vec{v} \cdot d \vec{a} $
First the divergence of \vec{v}.
\nabla \cdot \vec{v} = 2r.
Then the volume integral:
<br /> $ \int \int \int (2r) r^{2}sin \theta dr d\theta d\phi = 2 \int r^{3} dr \int sin \theta d\theta \int d\phi = 2 \cdot \frac{1}{4} r^{4} \left|^{R}_{0} \cdot 2 \cdot 2 \pi = 2 \pi R^{4}$<br />.
Ok, fine. But now do the area integral on the right. Since it is over the surface only, then r = R and the integral is only over \theta and \phi.
$ \int \vec{v} \cdot d\vec{a} = \int r^{2}\left|_{r=R} \cdot R^2 \int sin \theta d \theta \int d \phi = R^{4} \cdot 2 \cdot 2 \pi $
And the last time I checked, 2 \pi R^{4} \not= 4 \pi R^{4}
Please help since I am going nuts with this minute detail!
-LD
$ \int \nabla \cdot \vec{v} d \tau = \int \vec{v} \cdot d \vec{a} $
First the divergence of \vec{v}.
\nabla \cdot \vec{v} = 2r.
Then the volume integral:
<br /> $ \int \int \int (2r) r^{2}sin \theta dr d\theta d\phi = 2 \int r^{3} dr \int sin \theta d\theta \int d\phi = 2 \cdot \frac{1}{4} r^{4} \left|^{R}_{0} \cdot 2 \cdot 2 \pi = 2 \pi R^{4}$<br />.
Ok, fine. But now do the area integral on the right. Since it is over the surface only, then r = R and the integral is only over \theta and \phi.
$ \int \vec{v} \cdot d\vec{a} = \int r^{2}\left|_{r=R} \cdot R^2 \int sin \theta d \theta \int d \phi = R^{4} \cdot 2 \cdot 2 \pi $
And the last time I checked, 2 \pi R^{4} \not= 4 \pi R^{4}
Please help since I am going nuts with this minute detail!
-LD
Last edited: