A Name for a subset of real space being nowhere a manifold with boundary

AI Thread Summary
The discussion focuses on identifying a name for a subset S of real space that is not a manifold with boundary. The key characteristic of such a set is that around every point in S, there is no open subset of real space that is homeomorphic to either Euclidean space or a half-space. The idea of the complement of a dense set is proposed as a potential answer, although it is noted that not all complements of dense sets meet the criteria. The necessity of the half-space condition is debated, with a conclusion that it can be omitted without altering the essence of the question. The conversation emphasizes the complexity of defining this subset while exploring examples like the graph of a nowhere continuous function.
disregardthat
Science Advisor
Messages
1,864
Reaction score
34
I was wondering if anyone knew of a name for such a set, namely a subset S \subseteq \mathbb{R}^n which at every point x \in S there exists no open subset U of \mathbb{R}^n containing x such that S \cap U is homeomorphic to either \mathbb{R}^m or the half-space \mathbb{H}^m = \{(y_1,...,y_m) \in \mathbb{R}^m : y_m \geq 0\} for any integer m \geq 0. Of course, any set for which such open sets U exists for every x is called an embedded manifold with boundary. I'm looking for the opposite notion, in a sense.
 
Last edited:
Mathematics news on Phys.org
The complement of a dense set?
 
I've corrected my question a bit, it now more accurately reflects the title. The complement of a dense set for the original question (where m had the fixed value n) could very well be the correct answer. I can't prove it right now, but I'll look into it. For general m however, it's not the right notion. For example, I'd like the graph of a nowhere continuous function to fit the bill, but not the graph of a continuous function.

EDIT: Upon some further reflection it dawns on me that the half-space condition is unecessary. If a space is isomorphic to the half-space locally around any point, then it is necessarily isomorphic to euclidean space at a nearby point. Hence the half-space condition can be dropped entirely without changing the question.
 
Last edited:
I missed the ##m \neq n## idea, sorry.
 
Office_Shredder said:
I missed the ##m \neq n## idea, sorry.

It was my fault, I didn't include it in the original formulation :smile:
 
It still needs to be the complement of a dense set I think, but not every complement works (because {0} is the complement of a dense set for example).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
2K
Replies
2
Views
155
Replies
4
Views
894
Replies
20
Views
3K
Replies
12
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Back
Top