Need help understanding how to interpret a statistics problem

  • Thread starter Thread starter bennyska
  • Start date Start date
  • Tags Tags
    Statistics
bennyska
Messages
110
Reaction score
0

Homework Statement


Let c be a constant, and define Y_{i}=1 if X_{i}\leq c and zero otherwise. Find a statistic that is a function of Y_{1},Y_{2},...Y_{n} and also unbiased for F_{X}(c)=\Phi\left(\dfrac{c-\mu}{\sigma}\right).


Homework Equations





The Attempt at a Solution


not even sure how to being. i want some function of y_1,...,y_n, call it a, such that E(a)=phi((c-mu)/sigma)... but, yeah... i have no idea where to begin.

also, sorry for my crappy latex
 
Physics news on Phys.org
oh, i left out that X_i are distributed from a N(mu,sigma), and U=SUM(X_i) and W=SUM(X_i^2), if that matters.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top