Need help/varify on a torque/moment of inertia problem

  • Thread starter Thread starter iamtrojan3
  • Start date Start date
  • Tags Tags
    Inertia
AI Thread Summary
A high school junior is seeking help with a torque and moment of inertia problem involving a solid disc. The problem involves calculating the angular velocity of a disc after a force is applied, with given mass, radius, and number of rotations. The student calculated the moment of inertia as 0.1331 kg·m² and torque as 8.25 Nm, leading to an angular acceleration of 62 rad/s². However, there are doubts about the accuracy of the final angular velocity calculation, which resulted in 48.35 rad/s. The student invites corrections and feedback on their approach to the problem.
iamtrojan3
Messages
55
Reaction score
0

Homework Statement


Hi, this is my first time on this forum, so don't flame me for not doing things right. I'm a junior in high school and currently taking AP physics, this problem in my hwk has been bothering me for a while. I've never received the answer to this question and i just need to know if i did this right, since this is really the first moment of inertia problem i encountered...
the problem is:
A force of 15N is applied tangentially to the edge of a 0.88kg solid disc initially at rest. The radius of the disc is 0.55m. How fast will the disc be spinning after it has gone 3.0 complete rotations? (disregard all the friction/air resistance etc.)



Homework Equations


Torque = I (alpha) from F=ma
W^2= Wo^2 + 2 (alpha)(theta)
Torque= Lever arm x Force applied

The Attempt at a Solution



The moment of Inertia of a solid disc is I=1/2mr^2 >> I=1/2(0.88)(0.55^2) >> I=0.1331
Torque= Lever arm x Force applied Torque= 15N x 0.55m = 8.25Nm
Torque = alpha x I >>> 8.25= alpha x 0.1331 >>> alpha = 62 (this doesn't look right )
Then just use Kenematic Equations
since 3 rotations is 6pi
W^2=Wo^2x2(alpha)(Theta)
W^2=0(62)(6pi)>>> W= 48.35radians/sec (this doesn't look right either )

Feel free to correct me on watever...i admitt, i suck/hate these problems.
Thanks
 
Physics news on Phys.org
Looks okay to me, but it is always easy to follow someone's work and make the same simple mistake they did.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top