How to Prove Vector Calculus Identity Involving Cross Product and Gradient?

lylos
Messages
77
Reaction score
0

Homework Statement


Prove the following:
(\vec{r}\times\nabla)\cdot(\vec{r}\times\nabla)=r^2\nabla^2-r^2 \frac{\partial^2}{\partial r^2}-2r\frac{\partial}{\partial r}

Homework Equations


(\hat{e_i}\times\hat{e_j})=\epsilon_{ijk}
(\hat{e_i}\cdot\hat{e_j})=\delta_{ij}


The Attempt at a Solution


(r_i\nabla_j\epsilon_{ijk}r_l\nabla_m\epsilon_{lmn})(\hat{e_k}\cdot\hat{e_n})
(r_i\nabla_j\epsilon_{ijk}r_l\nabla_m\epsilon_{lmn}\delta_{kn})
(r_i\nabla_j\epsilon_{ijk}r_l\nabla_m\epsilon_{lmk})
(r_i\nabla_jr_l\nabla_m)(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl})
(r_i\nabla_jr_i\nabla_j)-(r_i\nabla_ir_j\nabla_j)

At this point, I'm lost. Does the gradient operator work on all terms, should I rearrange?
 
Physics news on Phys.org
One of your equations is wrong,
<br /> (\hat{e_i}\times\hat{e_j})=\epsilon_{ijk}\hat{e}_{k}<br />
I personally would write:
<br /> \mathbf{r}=x_{i}\hat{e}_{i},\quad\nabla =\hat{e}_{i}\partial_{i}<br />
Hopefully this should help.

Mat
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
9
Views
2K
Replies
2
Views
4K
Replies
9
Views
2K
Replies
10
Views
6K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
2
Views
3K
Back
Top