Dahaka14
- 73
- 0
Homework Statement
I'm lost at how to derive the probability of a neutrino species surviving an oscillation. After performing calculations, I can't seem to get it into the nice tidy form
1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)
Homework Equations
Whatev...
|\langle\nu_{e}|\psi(t)\rangle|^{2}
E_{i}=\sqrt{p^{2}+m_{i}^{2}}\approx p+\frac{m_{i}^{2}}{2p},~\text{where}~p\gg m
\text{and}~\Delta m^{2}=m_{2}^{2}-m_{1}^{2}
The Attempt at a Solution
\begin{align*}<br /> P_{e\rightarrow\nu_{e}}=\langle\nu_{e}|\psi(t)\rangle&=\langle\nu_{e}|\nu_{e}\rangle e^{-iEt/\hbar}=\left|<br /> \left(<br /> \begin{array}{ccc}<br /> \cos\theta & \sin\theta<br /> \end{array} \right)<br /> \left(<br /> \begin{array}{ccc}<br /> \cos\theta e^{-iE_{1}t/\hbar} \\<br /> \sin\theta e^{-iE_{2}t/\hbar}<br /> \end{array} \right)<br /> \right|^{2} \\<br /> &=|\cos^{2}\theta e^{-iE_{1}t/\hbar}+\sin^{2}\theta e^{-iE_{2}t/\hbar}|^{2} \\<br /> &=|e^{-iE_{1}t/\hbar}(\cos^{2}\theta+\sin^{2}\theta e^{-(iE_{2}-E_{1})t/\hbar})|^{2} \\<br /> &=(\cos^{2}\theta+\sin^{2}\theta e^{-i(E_{2}-E_{1})t/\hbar})(\cos^{2}\theta+\sin^{2}\theta e^{i(E_{2}-E_{1})t/\hbar}) \\<br /> &=\frac{1}{2}\sin^{2}2\theta\left(\cos\frac{\Delta m^{2}t}{2p}-i\sin\frac{\Delta m^{2}t}{2p}+\cos\frac{\Delta m^{2}t}{2p}+i\sin\frac{\Delta m^{2}t}{2p}\right)+\cos^{4}\theta+\sin^{4}\theta \\<br /> &=\sin^{2}2\theta\cos\frac{\Delta m^{2}t}{2p}+\cos^{4}\theta+\sin^{4}\theta \\<br /> &=...? \\<br /> &=1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)<br /> \end{align*}
Can someone help me fill in the blank? It would be best if I could do it on my own, so if possible just give me hints. If it is too explicit, then just tell me I guess. But as we all know, in order for me to truly own the idea, I should only be gently pushed toward the answer
