Orion1
- 961
- 3
Derivation of Newton's law of universal gravitation...
Non-relativistic Schwarzschild metric:
c^2 {d \tau}^{2} = e^{\nu} c^2 dt^2 - e^{\lambda} dr^2 - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2
metric identity:
g_{00} = e^{\nu} c^2 = \frac{ds^2}{dt^2}
Non-relativistic Einstein tensor:
G_{11} = \frac{- r \nu' + e^{\lambda} - 1}{r^2} = 0
Einstein tensor metric differential:
\nu' = \frac{e^{\lambda} - 1}{r} = \frac{d}{ds}
Non-relativistic metric identity:
e^{\nu} = \frac{1}{2} \left(1 - \frac{r_s}{r} \right)
metric identity:
e^{\lambda} - 1 = \frac{r_s}{r - r_s}
Gravitational acceleration:
g = - \frac{d s^2}{dt^2} \cdot \frac{d}{ds} = - \frac{d^2 s}{dt^2} = - g_{00} \nu' = - \frac{c^2 e^{\nu} (e^{\lambda} - 1)}{r} = - \frac{c^2}{2r} \left(1 - \frac{r_s}{r} \right) \left(\frac{r_s}{r - r_s} \right) = - \frac{c^2 r_s}{2 r^2} = - \frac{G M_1}{r^2}
Newton's second law and universal law of gravitation:
F_g = M_2 g = - M_2 g_{00} \nu' = - \frac{G M_1 M_2}{r^2}
Are these equations correct?
[/Color]
Reference:
http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation"
Last edited by a moderator: