Non-canonical terms of scalar fields

TimeFall
Messages
12
Reaction score
0
Hello! Well, I guess it's all in the title, really. I was reading about k-essence, and it was described as a scalar field having a non-canonical kinetic term. I did a bit of browsing and couldn't find a clear explanation of what, exactly, a non-canonical kinetic term is. Any help would be greatly appreciated! Thanks!
 
Physics news on Phys.org
I just peeked at probably the same paper you're reading, and it says that non-canonical kinetic energy means that instead of using X = ½∂μφ ∂μφ for the kinetic energy, he uses some function of it, F(X).
 
  • Like
Likes 1 person
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top