Bondi's original paper (http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1952MNRAS.112..195B&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf ) investigates steady state solutions for spherically symmetric accretion (e.g. ρ(r), v(r) not changing with time). It turns out that there is not a unique solution to this problem, and you are left with this free parameter λ. However, there is a maximum value of λ=λ_c, above which no solution is possible. λ=0 gives the lowest accretion rate (all the gas is at rest, so 0) and λ_c gives the maximum rate. Values near λ_c are expected for the flow, since nothing is stopping the gas from falling in. The values in the table in your book are for λ_c, and are near unity.