RUTA said:
You brought spatiality in the back door in two respects.
You aren't paying attention. It's not sneaking "space" in or not. It's constructing the locality of space-time from a pre-local format. As I said we're arguing diagonal to each other.
First, you started with a 2 sphere and ended up with a 2 sphere space.
First I started with the relativity group of a quantum 2-dimensional system.
You did identify points on the 2 sphere with the symmetry group SO(3), so you can use that association to distinguish otherwise identical points.
The group is the group. That's just mathematical isomorphism. The structure of the irreducible su(2),SO(3) representations is representable as, and thus able to model scalar and spinor wave-functions on that 2-sphere. Clearly I can't model space without modeling space. The proper observation to make at this stage is that this mathematical sphere is not yet a representation of a space on which object interact locally. It is simply a starting point.
For example, in Galilean relativity we have for example the group ISO(3) of spatial translations and rotations and we have a distinct ISO(3) group of velocity frame translations and rotations. The mathematical isomorphism is not physical identification.
If you don't do it that way, you can use the atlas, as part of the definition of a differentiable manifold, to provide mathematical rescue.
Often people say, "Imagine a 2 sphere whose points are indistinguishable." This relates to the second means by which you tacitly used spatiality to create multiplicity, i.e., you want to believe you have more than one # without any mathematical baggage (such as elements of SO(3) or the atlas in the case of S2).
Are you saying I should be constructing spatial points or space-time points? They don't exist. I'm trying to show you how to construct a model of composite physical objects where by virtue of their composite nature they manifest the degrees of freedom reflecting spatial relationships.
I do not have to distinguish space-time points. They are not distinguishable. Space-time events, and spatial objects are distinguishable by virtue of not having identical values for their observables. Even indistinguishable quanta (such as the photons in a laser beam) are yet quantifiable.
Do you truly have multiplicity without discernibility? Of course not,.
Tell it to lasers!
The way you communicated the notion of multiple # was to make rows and columns on the page, i.e., you used the spatiality of the page. You have not avoided multiplicity iff discernibility with this example.
You are just being argumentative here. The #'s represent a Young diagram, a standard notation of irreducible representations of the unitary groups. Next you'll be telling me I'm sneaking space in because the symbols I use have spatial extent.
The distinction between Lorentz invariance and covariance is only relevant to algebraic approaches where one has state vectors (invariance) and operators (covariance). In our graphical approach, for example, there is no such distinction.
Huh? Execute an active Lorentz transformation on an electron and it is no longer in the same state. It is not invariant.
Here again I think I see the difference in our perspectives. Please withhold judgment about which approach is best for the moment and just let me know if I have correctly expressed your half of it.
As I see it space-time itself (GR not withstanding) is not physically real. This is not to say that it is any less physically
meaningful but just that spatial, and space-time points are not themselves physical "things". Recall the idea of
six degrees of separation which is to say on average a chain of acquaintanceship exists between any two people not longer than six links long. Now you could sit down and pick a random person, construct a weighted network with closest associates having closest links. You could estimate the dimension and topology of this network based on how fast the number of associates grew as you moved outward from anyone node. You would have then a simple spatial model of relationships. The physically real entities are the people, i.e. the nodes. The relationships are not the people. Carry this further, let the relationships reflect e.g. how long it has been since two people last physically met or communicated with each other and then allow that model to evolve over time. Replace people with elementary quanta and you have what I envision as spatial structure defined as the model describing the structure of the relationships between interacting quanta. The quanta themselves may be isomorphic but are distinguished by their relationships to other quanta. In some cases the distinct elements may not be spatially distinguishable (like a close knit family each member sharing the same associations) like quarks in a nucleon. As I then see it it is sufficient to model these physical quanta in such a way that the relationships may be defined but needn't manifest as physical links, only definitional ones as e.g. rate of intimate communication and numbers of links in causal interaction.
Now as I'm sensing you see things, and as field theories generally model physics, one considers a spatial array of systems which are "real in the model" but such that the physical objects we study in nature are aggregates of excitations of the components of the array. I.e. bosons are excitations of an array of simple harmonic oscillators (like phonons in a crystal.) Thus in particular you are concerned with the identification and distinguishability of each component system of the model. They in effect
are the spatial points.
Is that a clear qualification of your position?
Now my position is now well formulated. As I've repeatedly said it is at present a notion not a theory or model. It really is only half a notion at that as the
real physics is in the dynamics not the kinematic model. The principle problem I have it to explain the manifestation of dynamic locality in this picture. As it starts out pre-local there is not yet a reason to forbid every object from interacting intimately with every other object. As I am starting basically with "just mathematics" I probably am going to have to introduce the actual space-time structure, by hand as selection rules restricting causal interactions.
Now as to distinquishability. Consider an electron. We cannot truly separate the electron from the electro-magnetic field around it. As we see when we renormalize the mass of that electron is a manifestion of itself interaction. As we see in semi-conductor theory the electrons and holes conducting in the crystal are different, having different effective masses than free electrons principally because each particle's induced e-m field behaves differently in the distinct environments. We nonetheless can quantify charge and count the quantized charges which is what leads us to describe these electronic charge carriers.
From another vantage, we could enumerate types of elementary particles in different ways. We may speak of an electron while meaning a class of electrons with various spins or we may be more specific and speak of an L-electron or a R-electron. We can be less specific and speak of a lepton without being specific about its weak isospin charge, treating electrons and e-neutrinos as just different cases of the same lepton system.
In each case we write down e.g. a wave-function representing the system in question. More generally I would specify its Hilbert space and possibly give a density operator representing partial knowledge about it. Implicit in all of this is the space-time degrees of freedom for "the particle". There again we can be more or less specific as the application dictates.
Now when it comes to making distinctions, consider if I speak of two leptons, they are isomorphic and not distinguishable in that context. However if I speak of an electron, and an e-neutrino I have a.) reduced the context by b.) implying an observation has been made, and thus distinguished them. When it comes to describing a single electron I also describe its spatial degrees of freedom, its momentum or position or superpositions thereof. Typically in a lab we may describe isomorphic cases of e.g. an electron in a cavity with our cavities distinct (e.g. in different labs) and thus we are picking two subspaces of the big Hilbert space for an electron in the universe.
Now I wish to stay finite so I am considering theories where space is compact, e.g. a 3-sphere. That plus an upper cutoff on momentum let's me approximate the description in a finite Hilbert space. It is still of very large dimension. In that very large Hilbert space the electron in your cavity of your lab is distinguishable from my electron in my isomorphic cavity in my lab via distinct values for observables, i.e. we have observed different values for observables sufficiently to project into distinct though isomorphic subspace of the grand electron hilbert space. I say this to be sure that you know that I know this is the case. Clearly no matter what I do I'm going to have to distinguish, distinct particles by what will be spatial degrees of freedom.
- I've made the point that spatial degrees of freedom are not the only means to distinguish particle, e.g. we can look at isospin.
- I've made the point that we can construct the large degrees of freedom isomorphic to spatial ones, from atomic components, (my "spinons") Naturally the component group will be isomorphic to the spatial group I seek to model. Firstly because I want it to and secondly because the number of low rank compact groups is quite limited and coincidence will occur (and I'm counting on it).
- This however does not mean I am "sneaking space-time in the back door" by any means. Firstly the example I gave doesn't even have the true dynamic structure of space yet. As I said I haven't begun to construct the dynamics in that example. It was meant to show how the kinematic structure could be constructed without invoking an array of spatial point systems as you're doing with your discrete field theory.
Now in that "spinon" model I did put a bit of spatial geometry in by hand in a sense. I think I mentioned that I implied a connection by which N component partons manifest a representation of SO(3). Let me elaborate a bit on that.
The composite of those N qubits each has a unitary group of su(2) ~ SO(3), or more properly u(2)~SO(3)xU(1) (this is the group of possible dynamic evolutions, i.e.:
iH \in \mathfrak{so}(3)\oplus \mathfrak{u}(1).
Considered as a (maxwell boltzman) composite the total has a unitary group:
U(2^N)
A specific factorization (turning off any interactions) gives the sub-group with Lie algebra:
N\cdot \mathfrak{u}(2)=\bigoplus_{k=1}^N \mathfrak{u}(2)
The connection of which I spoke is an isomorphism mapping from the SO(3) group which will manifest as spatial transformations to each copy of the N U(2) groups. Without that this the geometry I construct is meaningless, and which irreducible or reducible representation of SO(3) this aggregate of partons manifest is likewise meaningless. My notion is that the selection of such, and even the factorization itself must evolve from the dynamics of the system. The dynamics itself is some generator of the big U(2^N) group. For an arbitrary factorization as I described I can write that generator as a sum of U(2) dynamics for each component plus interaction terms between components. Since the factorization, and dynamic, are at this point arbitrary, doing so is pretty meaningless at this point. (Again I'm still really only playing with the math here.)
However I can consider how varying the choice of factorization for a given dynamic guided by some meaningful principle could lead to a relatively unique class of factorizations... wherein the dynamics of the composite, now expressed in terms of treating that SO(3) group as a coordinate transformation group, leads to meaningful localization of interactions w.r.t. coordinates, then I will have demonstrated a means to manifest the spatial structure from the causal structure (dynamics). In short I suppose one could find how the choice of global dynamic leads to a manifestation of what we perceive as localized object interacting in space.
Now I don't think it can work here because, for one, we don't see a 2-dim universe. My thoughts are to a more involved model with, hopefully the manifestation of certain gauge degrees of freedom are necessary to get the sought-after locality. (Really it is a
delocalization i.e. the distancing of objects manifest by weakened interaction.)
The real golden apple would be if such a program actually manifested the standard model plus gravity but that's really wishing hard on little substance. The realistic hope is the usual alternative paradigm for expressing observed nature with less put in by hand than is currently done with QFT and the standard model.
And let me also state that I whipped out this example to show how one might go about deriving spatial structure from the causal structure of the dynamics. It needn't be the only way or the best way.
Finally let me recall my original position which prompted this discussion. I claim that we should treat causal structure as primary and space-time geometry as derivative from that. I reiterate that in the case of my example which lacks as yet any dynamic thus any causal structure and thus its large 2-sphere may be as easily model spatial degrees of freedom as it may model a single particle with a very very large isospin. This is why I called it "prelocal" without the dynamics it doesn't yet have causal structure to make it local.
Where you object to me "sneaking space in the back-door" I would point out I haven't as I haven't yet manifested the causal structure of space-time. Many systems may have isomorphic group structure without being identical or even similar dynamically. Where you object that I must use space to distinguish things I say I first must distinguish things to relate them spatially and define coordinates. I would point out that a computer can encode a cube as a series of numbers in memory. It is not the numbers which make the cube but the computer code and hardware an how it treats those numbers. Imagine if the entire universe was "virtual" and then ask yourself what is the difference? The meaning is in the interactions which manifest our observations. We don't observe space, we observe objects in space.