Non-Square Skew (Symmetric/Repeating) Matrix?

  • Thread starter Thread starter GreenLRan
  • Start date Start date
  • Tags Tags
    Matrix
GreenLRan
Messages
59
Reaction score
0
Hi,

I am preparing to publish an academic article on computational efficiency and image processing. In my work, I have come across what I can best describe as a non-square skew (symmetric or repeating) matrix (I know it can't be symmetric since it's non-square).

Here are some examples of what it may look like:

(9 x 2)

\begin{array}{cc}
0 & -6 \\
0 & -6 \\
0 & -6 \\
3 & -3 \\
3 & -3 \\
3 & -3 \\
6 & 0 \\
6 & 0 \\
6 & 0 \end{array}


(16 x 3)

\begin{array}{ccc}
0 & -12 & -24 \\
0 & -12 & -24 \\
0 & -12 & -24 \\
0 & -12 & -24 \\
8 & -4 & -16 \\
8 & -4 & -16 \\
8 & -4 & -16 \\
8 & -4 & -16 \\
16 & 4 & -8 \\
16 & 4 & -8 \\
16 & 4 & -8 \\
16 & 4 & -8 \\
24 & 12 & 0 \\
24 & 12 & 0 \\
24 & 12 & 0 \\
24 & 12 & 0 \end{array}

(4 x 6)

\begin{array}{cccccc}
0 & -2 & -4 & -6 & -8 & -10 \\
0 & -2 & -4 & -6 & -8 & -10 \\
10 & 8 & 6 & 4 & 2 & 0 \\
10 & 8 & 6 & 4 & 2 & 0 \end{array}


Is there a specific name for this type of matrix? If so, I could not find one.

Also, what are some properties of this matrix that I may be overlooking?

1) It seems that the rank will always be 2.
2) (If the matrix is A): AA' and A'A is always symmetric.


Thank you for your time.
 
Physics news on Phys.org
Except that they are somehow funny, there is no name that I knew of. Your observations look right.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
5
Views
1K
Replies
2
Views
3K
Replies
5
Views
2K
Replies
7
Views
2K
Replies
5
Views
2K
Replies
2
Views
213
Replies
4
Views
2K
Replies
2
Views
971
Back
Top