(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A cylinder with radius R and mass M has density that increases linearly with radial distance r from the cylinder axis, ie. [itex]\rho[/itex]=[itex]\rho[/itex][itex]_{0}[/itex](r/R), where [itex]\rho[/itex][itex]_{0}[/itex] is a positive constant. Show that the moment of inertia of this cylinder about a longitudinal axis through the centre is given by I=(3MR[itex]^{3}[/itex])/5

2. Relevant equations

I=[itex]\int[/itex]r[itex]^{2}[/itex].dm

volume = 2[itex]\pi[/itex]rL.dr

3. The attempt at a solution

I=[itex]\int[/itex]r[itex]^{2}[/itex][itex]\rho[/itex].dv

=[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)dv

=[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)(2[itex]\pi[/itex]rL).dr

integrate between 0 and R to obtain

2[itex]\rho_{0}[/itex][itex]\pi[/itex]R[itex]^{4}[/itex]L/5

However, I do not understand how to express this without using the term [itex]\rho_{0}[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Non-uniform inertia

**Physics Forums | Science Articles, Homework Help, Discussion**