Nonlinear Characters and Finite Groups: A Case Study

Ant farm
Messages
19
Reaction score
0
Hi,
Ok, I have notice that for several finite groups the following situation occurs... I will use the non-abelian group of order 27 to illustrate the point I'm making:

The group has 11 charachers, 9 of which are linear.
The group has derived subgroup G' (= Z(G) the centre of the group...irrelevant!) has 3 elements, G/G' is isomorphic to C_3 x C_3

If the non linear characters are called Chi_10 and Chi_11, why are they equal to zero on G/G'?

Another example of where this occurs would be A_4, which has 3 linear characters, and one non-llinear, and the derived subgroup= V_4 so Chi_4, the non-linear character = 0 on the conjugacy classes (123) and (132)

Thank You very much!
 
Physics news on Phys.org
This is an aspect of a named theory whose name escapes me... gah, that's annoying: the relation between characters of G and G/N for some normal subgroup. ARRRGH.

Anyway. Chi_10 cannot be zero on G/G' since Chi_10 is not a character of G/G'. It cannot afford a rep of G/G' unless G' is in the kernel of Chi_10. Anyway, the identity is certainly an element of G/G' so that can't be what you mean anyway.

Here's an idea for you to think about, that might be to do with what you're trying to get at. Take a (linear) character of G', now induce it up to G. What happens? Perhaps you might well be adding up w,w^2 and w^3 where w is a cube root of unity. What is w+w^2+w^3. Note: I have not checked this since I don't have pen or paper at hand. I might be selling you a dummy, sorry if I am.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top