Normal reaction in banked road circular motion problem

AI Thread Summary
The discussion revolves around the correct formulation of the forces acting on a vehicle in banked circular motion. Participants debate whether the equation for the forces parallel to the banked road should be R1 + R2 - mgcosθ = mV^2/r or R1 + R2 - mgcosθ = -mV^2/r, emphasizing the role of friction and the vehicle's speed. It is noted that the angle θ's measurement and the direction of the forces significantly influence the equations. Concerns are raised about the absence of trigonometric factors in the equations, questioning their validity. The conversation concludes with a clarification that the first equation is likely correct under certain assumptions, but further analysis is needed for confirmation.
physea
Messages
211
Reaction score
3
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
 
Physics news on Phys.org
physea said:
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
The friction will be directly opposite mgsinθ if the car is going slow enough, but it will be the other way if the object is going fast enough. Therefore, the equation depends on which way the car is slipping. If it is in perfect equilibrium, then mgsinθ and friction cancel out and you're left with only components perpendicular to the road (such as the normal force and mgcosθ) causing the centripetal acceleration.
 
physea said:
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
If you want an answer to that then it is probably better if you actually define all the variables in those equations, along with a suitable diagram. Also, you will get a better response if you can manage to be a bit more polite with your replies; the customer is not always right here because there are no (paying) customers. "That's all".
 
R1 and R2 are the normal reactions of the ground to the vehicle's wheels
mg is the vehicle weight
V it's speed
θ the angle of the banked road
I think now it's clear
 
physea said:
R1 and R2 are the normal reactions of the ground to the vehicle's wheels
mg is the vehicle weight
V it's speed
θ the angle of the banked road
Is the angle measured from the horizontal or from the vertical? Is positive for R1, R2 and the centripetal acceleration taken in the sense of an inward net force? I assume yes. Is positive for mg cos(θ) taken in terms of down=positive or up=positive. That would obviously have a key influence on the answer you seek.

Since you have adopted coordinates in which the centripetal acceleration is neither aligned with the x-axis or with the y-axis and have restricted your attention to the x axis, one would expect only part of the centripetal force (##\frac{mv^2}{r}##) to be relevant. Yet there is no cos(θ) or sin(θ) factor on the term to account for this. Similarly, there is no cos(θ) or sin(θ) factor on the terms for R1 or R2. So I have to question whether either equation can be correct.

Still, a simple argument can be made. If we select a track with a degenerate bank angle so that cos(θ) = 0 then the equations reduce to

##R_1 + R_2 = \frac{mv^2}{r}## and
##R_1 + R_2 = -\frac{mv^2}{r}##

Assuming a convention that positive is inward/up then ##R_1## and ##R_2## must be positive. ##\frac{mv^2}{r}## will neccessarily be positive. So the second equation is obviously wrong. Though, as above, that does not mean that the first equation must be right.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...

Similar threads

Replies
10
Views
4K
Replies
5
Views
259
Replies
13
Views
6K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
19
Views
3K
Back
Top