Normal reaction in banked road circular motion problem

Click For Summary
SUMMARY

The discussion centers on the equations of forces acting on a vehicle on a banked road during circular motion. The primary equations under consideration are R1 + R2 - mgcosθ = mV²/r and R1 + R2 - mgcosθ = -mV²/r. It is established that the direction of friction depends on the vehicle's speed relative to the bank angle θ. The normal reactions R1 and R2 correspond to the vehicle's wheels, while mg represents the vehicle's weight. The analysis concludes that the second equation is incorrect based on the assumption that positive is inward/up.

PREREQUISITES
  • Understanding of circular motion dynamics
  • Familiarity with forces acting on inclined planes
  • Knowledge of centripetal acceleration concepts
  • Ability to interpret free body diagrams
NEXT STEPS
  • Study the derivation of forces on banked curves in physics textbooks
  • Learn about the role of friction in circular motion
  • Explore the effects of varying bank angles on vehicle stability
  • Investigate the implications of different coordinate systems in force analysis
USEFUL FOR

Physics students, mechanical engineers, and anyone studying vehicle dynamics on banked roads will benefit from this discussion.

physea
Messages
211
Reaction score
3
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
 
Physics news on Phys.org
physea said:
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
The friction will be directly opposite mgsinθ if the car is going slow enough, but it will be the other way if the object is going fast enough. Therefore, the equation depends on which way the car is slipping. If it is in perfect equilibrium, then mgsinθ and friction cancel out and you're left with only components perpendicular to the road (such as the normal force and mgcosθ) causing the centripetal acceleration.
 
physea said:
What is the equation of forces please for the axis parallel to the banked road? Is it R1+R2-mgcosθ=mV^2/r or R1+R2-mgcosθ=-mV^2/r? Can you advise me please?
If you want an answer to that then it is probably better if you actually define all the variables in those equations, along with a suitable diagram. Also, you will get a better response if you can manage to be a bit more polite with your replies; the customer is not always right here because there are no (paying) customers. "That's all".
 
R1 and R2 are the normal reactions of the ground to the vehicle's wheels
mg is the vehicle weight
V it's speed
θ the angle of the banked road
I think now it's clear
 
physea said:
R1 and R2 are the normal reactions of the ground to the vehicle's wheels
mg is the vehicle weight
V it's speed
θ the angle of the banked road
Is the angle measured from the horizontal or from the vertical? Is positive for R1, R2 and the centripetal acceleration taken in the sense of an inward net force? I assume yes. Is positive for mg cos(θ) taken in terms of down=positive or up=positive. That would obviously have a key influence on the answer you seek.

Since you have adopted coordinates in which the centripetal acceleration is neither aligned with the x-axis or with the y-axis and have restricted your attention to the x axis, one would expect only part of the centripetal force (##\frac{mv^2}{r}##) to be relevant. Yet there is no cos(θ) or sin(θ) factor on the term to account for this. Similarly, there is no cos(θ) or sin(θ) factor on the terms for R1 or R2. So I have to question whether either equation can be correct.

Still, a simple argument can be made. If we select a track with a degenerate bank angle so that cos(θ) = 0 then the equations reduce to

##R_1 + R_2 = \frac{mv^2}{r}## and
##R_1 + R_2 = -\frac{mv^2}{r}##

Assuming a convention that positive is inward/up then ##R_1## and ##R_2## must be positive. ##\frac{mv^2}{r}## will neccessarily be positive. So the second equation is obviously wrong. Though, as above, that does not mean that the first equation must be right.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
632
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K