Normalization of a quantum particle

DODGEVIPER13
Messages
668
Reaction score
0

Homework Statement


Why is it important for a wave function to be normalized? Is an unnormalized wave function a solution to the schrodinger equation?


Homework Equations


∫ ψ^2 dx=1 (from neg infinity to infinity)


The Attempt at a Solution


So I know normalization simply means that the sum of all dx is equal to 1 and the squared function is know as the probabily density so it gives that you can find a particle with 100% certainty and this is why it is important. Is this correct? I am not sure on the second part because when a wave is not normalized we can't know with 100% probability where a particle is appeasing the uncertainty principle which, I would guess the normalized version would not. I rememeber my instuctor saying something about it being a solution if it satisfys the conservation of energy and de broglies hypothesis or something to that effect so yes I would assume an unormalized wave would pass the test. Is this correct?
 
Physics news on Phys.org
There's a mere simplification of all formulae derived from the probabilistic interpretation. All vectors are by convention set to modulus 1, the ones which can't be 'normalized' are said to be 'generalized eigenstates', like the ones for the free particle in n-dimensions.
 
Thanks man I appreciate the help.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top