DivGradCurl
- 364
- 0
Homework Statement
Normalization of radial Laguerre-Gauss
Normalize \Psi _n (r) = h_n L_n (2\pi r^2) e^{-\pi r^2}
Homework Equations
\int _0 ^{\infty} e^{-x} \, x^k \, L_n ^{(k)} (x) \, L_m ^{(k)} (x) dx = \frac{(n+k)!}{n!} \delta _{m,n}
The Attempt at a Solution
1 = \int _0 ^{\infty} \Psi _m ^{\ast} (r) \Psi _n (r) dr = \int _0 ^{\infty} h_m ^{\ast} L_m (2\pi r^2) e^{-\pi r^2} h_n L_n (2\pi r^2) e^{-\pi r^2} dr
If I let x = 2\pi r^2, then I get dx = (4\pi r) dr. The radial dependence bothers me. I think there's a step I'm missing out.