broegger
- 257
- 0
I'm trying to normalize the even wave functions for the finite square well. The wave function is:
<br /> \psi(x)=<br /> \begin{cases}<br /> Fe^{\kappa x} & \text{for } x< a\\<br /> D\cos(lx) & \text{for } -a\leq x \leq a\\<br /> Fe^{-\kappa x} & \text{for } x> a<br /> \end{cases}<br />
How can I determine D and F? When I set
I obtain an equation in the two unknown amplitudes D and F. I could apply some boundary conditions to get more equations, but it gets rather complicated and I know there is an easier way...
<br /> \psi(x)=<br /> \begin{cases}<br /> Fe^{\kappa x} & \text{for } x< a\\<br /> D\cos(lx) & \text{for } -a\leq x \leq a\\<br /> Fe^{-\kappa x} & \text{for } x> a<br /> \end{cases}<br />
How can I determine D and F? When I set
\int_{-\infty}^{\infty}|\psi(x)|^2dx = 1,
I obtain an equation in the two unknown amplitudes D and F. I could apply some boundary conditions to get more equations, but it gets rather complicated and I know there is an easier way...