MHB Norms for a Linear Transformation .... Browder, Lemma 8.4 ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am currently reading Chapter 8: Differentiable Maps and am specifically focused on Section 8.1 Linear Algebra ...

I need some help in fully understanding Lemma 8.4 ...

Lemma 8.4 reads as follows:
View attachment 9371
View attachment 9372
In the above proof of Lemma 8.4 by Browder we read the following:

" ... ... On the other hand since $$\sum_{ j = 1 }^m ( a_k^j )^2 = \ \mid T e_k \mid \ \le \| T \|^2$$ for every $$k, 1 \le k \le n$$ ... ... "

My question is as follows:

Can someone please demonstrate rigorously that $$\sum_{ j = 1 }^m ( a_k^j )^2 = \ \mid T e_k \mid \ \le \| T \|^2$$ ...
(... ... it seems plausible that $$\sum_{ j = 1 }^m ( a_k^j )^2 = \ \mid T e_k \mid \ \le \| T \|^2$$ but how do we demonstrate it rigorously ... ... )
Help will be much appreciated ...

Peter
 

Attachments

  • Browder - 1 - Lemma 8.4 ... PART 1 .. .png
    Browder - 1 - Lemma 8.4 ... PART 1 .. .png
    39.8 KB · Views: 118
  • Browder - 2 - Lemma 8.4 ... PART 2 ... .png
    Browder - 2 - Lemma 8.4 ... PART 2 ... .png
    12.3 KB · Views: 113
Physics news on Phys.org
Peter said:
Can someone please demonstrate rigorously that $$\sum_{ j = 1 }^m ( a_k^j )^2 = |T e_k|^2 \le \| T \|^2$$ ...
The equality $$\sum_{ j = 1 }^m ( a_k^j )^2 =|T \mathbf{e}_k|^2$$ comes from the definition of the matrix of $T$. In fact, $T \mathbf{e}_k = (a_k^1 \mathbf{e}_1,a_k^2 \mathbf{e}_2,\ldots,a_k^m \mathbf{e}_m).$

The inequality $|T \mathbf{e}_k| \leqslant \|T\|$ comes from the definition of $\|T\|$. In fact, $\|T\| = \sup\{|T\mathbf{v}|:\mathbf{v}\in\Bbb{R}^n, |\mathbf{v}|\leqslant1\}$, which implies that $|T\mathbf{v}| \leqslant \|T\|$whenever $|\mathbf{v}|\leqslant1$. But $|\mathbf{e}_k| = 1$, so we can take $\mathbf{v} = \mathbf{e}_k$ to get $|T \mathbf{e}_k| \leqslant \|T\|$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top