Nth Derivative of an Even Function

FeDeX_LaTeX
Science Advisor
Messages
436
Reaction score
13

Homework Statement


Let ##f(x) = \frac{\sin x}{b + \cos(ax)}##. Show that the nth derivative ##f^{(n)}(0) = 0## if n is an even integer.


Homework Equations


Leibniz's generalised product rule:

##(f \cdot g)^{(n)} = \sum_{k = 0}^{n} \binom{n}{k} f^{(k)}g^{(n-k)}##


The Attempt at a Solution


I'm letting ##f(x) = \sin x## and ##g(x) = \frac{1}{b + \cos(ax)}## then applying Leibniz's rule. Clearly, the terms of the series k = 0, k = 2, ... (every even k) are all 0 when x = 0, since they all contain an even derivative of sin (which gives us sin again). But what do I do about the derivatives of g(x)? Is this the right approach?
 
Physics news on Phys.org
Odd functions of x have only odd powers of x in their Taylor-McLaurin series, so...
 
So you're saying I let ##\frac{1}{b + \cos(ax)} = a_0 + a_{1}x^2 + a_{2}x^4 + ... ##?
 
FeDeX_LaTeX said:
So you're saying I let ##\frac{1}{b + \cos(ax)} = a_0 + a_{1}x^2 + a_{2}x^4 + ... ##?

There is a much, much easier way. Just answer the following three questions.
1. The given function is (a) odd; (b) even; (c) neither.
2. The derivative of an even function is (a) even; (b) odd; (c) neither.
3. The derivative of an odd function is (a) even; (b) odd; (c) neither,
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top