Proving or Disproving Null Space Containment in F(n) for A and A^2

Click For Summary
The discussion centers on proving that the null space of matrix A is contained within the null space of A squared, denoted as Null(A) ⊆ Null(A^2). The approach involves using the definition of the null space, where if x is in Null(A), then Ax = 0. By applying matrix multiplication, it is shown that A^2x = 0, confirming that x is also in Null(A^2). Participants emphasize the importance of clear proof exposition and suggest using LaTeX for better presentation of equations. The conclusion affirms the validity of the initial claim regarding null space containment.
sarumman
Messages
2
Reaction score
1

Homework Statement


given
upload_2018-12-19_23-51-14.png
I am required to proove or disprove:[/B]
lTxizl2.jpg


Homework Equations


rank
dim
null space

The Attempt at a Solution


I tried to base my answer based on the fact that null A and null A^2 is Contained in F (n)
and
dim N(A)+rank(A)=N
same goes for A^2.
 

Attachments

  • upload_2018-12-19_23-51-14.png
    upload_2018-12-19_23-51-14.png
    952 bytes · Views: 782
  • lTxizl2.jpg
    lTxizl2.jpg
    2 KB · Views: 706
Physics news on Phys.org
Why don't you just use the definition?

##x \in Null(A) \implies Ax = 0 ##

If the statement is true, you have to prove that ##A^2 x = 0##. Can you show that?
 
  • Like
Likes sarumman
Math_QED said:
Why don't you just use the definition?

##x \in Null(A) \implies Ax = 0 ##

If the statement is true, you have to prove that ##A^2 x = 0##. Can you show that?
thank you! you mean like so:
upload_2018-12-20_0-5-50.png
 

Attachments

  • upload_2018-12-20_0-5-50.png
    upload_2018-12-20_0-5-50.png
    40.2 KB · Views: 520
  • Like
Likes WWGD
Yes, the idea is certainly correct. The proof exposition can be better though. Here is how I would write it:

We want to prove that ##Null(A) \subseteq Null(A^2)##, so let's take an arbitrary element ##x \in Null(A)##. By definition, this means that ##Ax = 0##. Since ##A^2x = (AA)x = A(Ax) = A0 = 0## (here we used associativity of matrix multiplication/function composition), it follows that ##x \in Null(A^2)##, and we are done.
 
  • Like
Likes FactChecker and WWGD
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
1K