- #1

gruba

- 206

- 1

## Homework Statement

Prove that [itex]\dim L(\mathbb F)+\dim Ker L=\dim(\mathbb F+Ker L)[/itex] for every subspace [itex]\mathbb{F}[/itex] and every linear transformation [itex]L[/itex] of a vector space [itex]V[/itex] of a finite dimension.

## Homework Equations

-Fundamental subspaces

-Vector spaces

## The Attempt at a Solution

Theorem: [/B]If [itex]L:U\rightarrow V[/itex] is a linear transformation and [itex]\dim U=n[/itex], then [itex]\dim Ker L+\dim C(L^T)=n[/itex]. [itex]Ker L[/itex] is the null space, [itex]C(L^T)[/itex] is the row space of [itex]L[/itex] and [itex]n[/itex] is the number of column vectors in [itex][L][/itex].

How to use this theorem to prove the given statement?