Number Theory (Finite and Infinite Sets)

Ankit Mishra
Messages
6
Reaction score
0

Homework Statement



Why is R\Q not countably infinate or denumerable? Given R (Real Number) is not countably infinate or denumerable and Q (rational number) is denumerable.

Homework Equations



A set is said to be denumberable or countably infinate if there exists a bijestion of N (natural Number) onto S.

The Attempt at a Solution



Let Q be a subset of R and Let S be R-Q, which is denumerable. Via the defn there exists a bijection but R-Q is not bijective R-Q is the set of Real Numbers which is already not denumerable. I showed this to my prof and he said its not correct. He said to use Q u (R-Q)=R, we know Q is denumerable and R not to be denumerable use this to show R-Q is not denumerable? HOW!
 
Physics news on Phys.org
What you need to show is that the union of two countably infinite sets is countable. So take two sets {A_n} and {B_n}. Can you find a bijection from their union to the natural numbers? (hint: it's really easy)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top