Number Theory Problem: Proving (a,b)=1 if a|c and b|c

yeland404
Messages
23
Reaction score
0

Homework Statement



a,b,c belong to Z with (a,b)=1. Prove that if a|c and b|c, then ab|c

Homework Equations


let a1,a2...an, c belong to Zwith a1...an pairwise relatively prime, prove if ai|c for each i, then a1a2...an|c


The Attempt at a Solution



if a|c, then c=ea, b|c, then c=fb, then which the next step and how it relates with (a,b)=1
 
Physics news on Phys.org
(a,b)=1, thus consider the prime factorization of e.
 
There exists integers x, y such that ax+by=1. Therefore c=acx+bcy=abrx+basy.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top