mathsss2
- 38
- 0
I posted this question but I am not getting anywhere with this question, any help would be very appreciated:
1. let p be odd prime explain why: 2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2) mod p.
2. Using number 2 and wilson's thereom [(p-1)!\equiv-1 mod p] prove 1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2} mod p
Thanks.
1. let p be odd prime explain why: 2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2) mod p.
2. Using number 2 and wilson's thereom [(p-1)!\equiv-1 mod p] prove 1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2} mod p
Thanks.