NxN-complex matrix, identified 2Nx2N-real matrix, determinant

jostpuur
Messages
2,112
Reaction score
19
If A\in\mathbb{C}^{N\times N} is some complex matrix, is there anything we could say about the determinant of the matrix

<br /> \left(\begin{array}{cc}<br /> \textrm{Re}(A) &amp; -\textrm{Im}(A) \\<br /> \textrm{Im}(A) &amp; \textrm{Re}(A) \\<br /> \end{array}\right)\quad\in\mathbb{R}^{2N\times 2N}<br />

where \textrm{Re}(A)\in\mathbb{R}^{N\times N} and \textrm{Im}(A)\in\mathbb{R}^{N\times N} have been defined by element wise real and imaginary parts?

For example, could it be that the determinant of the 2N\times 2N-matrix could be expressed as function of the determinants of the real N\times N-matrices?

Or is the asked determinant related to the complex determinant \det(A)\in\mathbb{C}?

I'm interested in this, because if I want to identify N-dimensional complex space with 2N-dimensional real space, then the complex linear transformation is naturally identified with the above matrix. The equation

<br /> z^2 = Az^1,\quad\quad z^1,z^2\in\mathbb{C}^N<br />

is equivalent with

<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^2) \\ \textrm{Im}(z^2) \\<br /> \end{array}\right)<br /> = \left(\begin{array}{cc}<br /> \textrm{Re}(A) &amp; -\textrm{Im}(A) \\<br /> \textrm{Im}(A) &amp; \textrm{Re}(A) \\<br /> \end{array}\right)<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^1) \\ \textrm{Im}(z^1) \\<br /> \end{array}\right)<br />
 
Physics news on Phys.org
a conjecture

I computed by brute force the following formula:

<br /> \textrm{det} \left(\begin{array}{cccc}<br /> R_{11} &amp; R_{12} &amp; -I_{11} &amp; -I_{12} \\<br /> R_{21} &amp; R_{22} &amp; -I_{21} &amp; -I_{22} \\<br /> I_{11} &amp; I_{12} &amp; R_{11} &amp; R_{12} \\<br /> I_{21} &amp; I_{22} &amp; R_{21} &amp; R_{22} \\<br /> \end{array}\right)<br />
<br /> = \textrm{det}(R)^2 + \textrm{det}(I)^2 + (R_{11}I_{22} - R_{21}I_{12})^2 + (R_{22}I_{11} - R_{12}I_{21})^2<br /> + 2(R_{11}I_{21} - R_{21}I_{11})(R_{22}I_{12} - R_{12}I_{22})<br />
<br /> = \textrm{det}(R - iI) \textrm{det}(R + iI)<br />

So it seems that

<br /> \textrm{det}\left(\begin{array}{cc}<br /> \textrm{Re}(A) &amp; -\textrm{Im}(A) \\<br /> \textrm{Im}(A) &amp; \textrm{Re}(A) \\<br /> \end{array}\right) = |\textrm{det}(A)|^2<br />

could be true for all A\in\mathbb{C}^{N\times N}.
 
Back
Top