jostpuur
- 2,112
- 19
If A\in\mathbb{C}^{N\times N} is some complex matrix, is there anything we could say about the determinant of the matrix
<br /> \left(\begin{array}{cc}<br /> \textrm{Re}(A) & -\textrm{Im}(A) \\<br /> \textrm{Im}(A) & \textrm{Re}(A) \\<br /> \end{array}\right)\quad\in\mathbb{R}^{2N\times 2N}<br />
where \textrm{Re}(A)\in\mathbb{R}^{N\times N} and \textrm{Im}(A)\in\mathbb{R}^{N\times N} have been defined by element wise real and imaginary parts?
For example, could it be that the determinant of the 2N\times 2N-matrix could be expressed as function of the determinants of the real N\times N-matrices?
Or is the asked determinant related to the complex determinant \det(A)\in\mathbb{C}?
I'm interested in this, because if I want to identify N-dimensional complex space with 2N-dimensional real space, then the complex linear transformation is naturally identified with the above matrix. The equation
<br /> z^2 = Az^1,\quad\quad z^1,z^2\in\mathbb{C}^N<br />
is equivalent with
<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^2) \\ \textrm{Im}(z^2) \\<br /> \end{array}\right)<br /> = \left(\begin{array}{cc}<br /> \textrm{Re}(A) & -\textrm{Im}(A) \\<br /> \textrm{Im}(A) & \textrm{Re}(A) \\<br /> \end{array}\right)<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^1) \\ \textrm{Im}(z^1) \\<br /> \end{array}\right)<br />
<br /> \left(\begin{array}{cc}<br /> \textrm{Re}(A) & -\textrm{Im}(A) \\<br /> \textrm{Im}(A) & \textrm{Re}(A) \\<br /> \end{array}\right)\quad\in\mathbb{R}^{2N\times 2N}<br />
where \textrm{Re}(A)\in\mathbb{R}^{N\times N} and \textrm{Im}(A)\in\mathbb{R}^{N\times N} have been defined by element wise real and imaginary parts?
For example, could it be that the determinant of the 2N\times 2N-matrix could be expressed as function of the determinants of the real N\times N-matrices?
Or is the asked determinant related to the complex determinant \det(A)\in\mathbb{C}?
I'm interested in this, because if I want to identify N-dimensional complex space with 2N-dimensional real space, then the complex linear transformation is naturally identified with the above matrix. The equation
<br /> z^2 = Az^1,\quad\quad z^1,z^2\in\mathbb{C}^N<br />
is equivalent with
<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^2) \\ \textrm{Im}(z^2) \\<br /> \end{array}\right)<br /> = \left(\begin{array}{cc}<br /> \textrm{Re}(A) & -\textrm{Im}(A) \\<br /> \textrm{Im}(A) & \textrm{Re}(A) \\<br /> \end{array}\right)<br /> \left(\begin{array}{c}<br /> \textrm{Re}(z^1) \\ \textrm{Im}(z^1) \\<br /> \end{array}\right)<br />