MHB Troubleshooting Indeterminate Limits in Calculus

  • Thread starter Thread starter phrox
  • Start date Start date
  • Tags Tags
    Limit
phrox
Messages
40
Reaction score
1
http://i1301.photobucket.com/albums/ag115/phrox1/additional_zps10bf2373.png

That's the question ^^,

So I came up with H = sqrt(D^2 + 1)

Then I got

H - D = (sqrt(1/x^2)+1) - D

Annndd then:

H - 1/x = (sqrt(1/x^2)+1) - sqrt(1/x^2)

I have no clue where to go from here, any help is appreciated!
 
Physics news on Phys.org
So did is my equation for a) H - 1/x = (sqrt(1/x^2)+1) - sqrt(1/x^2)

and for b) it says instead, compute the limit as x-> 0, which would make it not work because all the x's are under ones, making them undefined.
 
phrox said:
So did is my equation for a) H - 1/x = (sqrt(1/x^2)+1) - sqrt(1/x^2)

and for b) it says instead, compute the limit as x-> 0, which would make it not work because all the x's are under ones, making them undefined.
So far so good. Have you covered how to use L'Hopital's rule for the indeterminant form \infty - \infty?

-Dan
 
no I haven't covered L'Hospital's rule, also I can't directly sub x->0 into this because it just won't work, undefined.
 
Well, okay. I'll leave the final word to someone who knows limits better than me, but here's a "hand waving" argument.

For small x, 1/x^2 gets very large. So large that we can ignore the 1 in the first expression:
[math]\frac{1}{x^2} + 1 \to \frac{1}{x^2}[/math]

so
[math]\lim_{x \to 0} \left ( \sqrt{\frac{1}{x^2} + 1} - \sqrt{\frac{1}{x^2}} \right ) \to \sqrt{\frac{1}{x^2}} - \sqrt{\frac{1}{x^2}} = 0[/math]

-Dan
 
phrox said:
So did is my equation for a) H - 1/x = (sqrt(1/x^2)+1) - sqrt(1/x^2)

and for b) it says instead, compute the limit as x-> 0, which would make it not work because all the x's are under ones, making them undefined.

Very well!... what You have to do is to evaluate...

$\displaystyle l= \lim_{x \rightarrow 0} \sqrt{1 + \frac{1}{x^{2}}} - \sqrt{\frac{1}{x^{2}}}\ (1)$

Now You can consider that...

$\displaystyle \sqrt{1 + \frac{1}{x^{2}}} - \sqrt{\frac{1}{x^{2}}} = (\sqrt{1 + \frac{1}{x^{2}}} - \sqrt{\frac{1}{x^{2}}})\ \frac{\sqrt{1 + \frac{1}{x^{2}}} + \sqrt{\frac{1}{x^{2}}}}{\sqrt{1 + \frac{1}{x^{2}}} + \sqrt{\frac{1}{x^{2}}}}= \frac{1}{\sqrt{1 + \frac{1}{x^{2}}} + \sqrt{\frac{1}{x^{2}}}}\ (2)$

... and the 'indeterminate form' disappared...

Kind regards

$\chi$ $\sigma$
 
topsquark said:
[math]\sqrt{\frac{1}{x^2}} - \sqrt{\frac{1}{x^2}} = 0[/math]

-Dan

You can not remove the limit because it is still indeterminate form . You can not simply cancel .
 
I'm guessing you can't do it simply this way? http://s1301.photobucket.com/user/phrox1/media/image001_zps75e88aa9.jpg.html?sort=3&o=0
 
phrox said:
I'm guessing you can't do it simply this way? http://s1301.photobucket.com/user/phrox1/media/image001_zps75e88aa9.jpg.html?sort=3&o=0
No you can't, because the expression $\infty - \infty$ is not defined. What you can do is to use the trick in chisigma's comment above, to write the limit as $$\lim_{x\to0}\left( \frac{1}{\sqrt{1 + \frac{1}{x^{2}}} + \sqrt{\frac{1}{x^{2}}}}\right).$$ Multiply top and bottom of that fraction by $x$, so that it becomes $$\lim_{x\to0}\left( \frac{x}{\sqrt{x^2 + 1} + 1}\right).$$ In that fraction, the numerator goes to $0$ as $x\to0$, but the denominator goes to $2$. So the fraction has limit $\dfrac02 = 0.$
 
  • #10
Thanks a ton, I just find it so weird thinking of x as in sqrt(x^2) and etc. Wish I had time to practice limits instead of getting an assignment as soon as I'm finished the last lol.
 
  • #11
ZaidAlyafey said:
You can not remove the limit because it is still indeterminate form . You can not simply cancel .
I really should have written it as
[math]\lim_{x \to 0} \left ( \sqrt{ \frac{1}{x^2} } - \sqrt{ \frac{1}{x^2} } \right )[/math]

but I did say it was "hand waving"...

-Dan
 

Similar threads

Back
Top