Odds versus number of draws to get 6 of 72 items

  • Thread starter Thread starter rcgldr
  • Start date Start date
AI Thread Summary
The discussion centers on calculating the average number of draws needed to obtain all six unique colored balls from a jar containing 66 white balls and 6 unique colored balls. It was determined through programming that approximately 176 draws are required to see each colored ball at least once. The expected number of draws for each unique ball is calculated using probabilities, leading to the conclusion that the total expected number of draws is about 176. The conversation also touches on the complexity of calculating success rates versus draws and the possibility of generating a distribution curve, although the average number of draws is deemed sufficient for the analysis. Overall, the focus remains on the average number of draws needed to achieve the desired outcome.
rcgldr
Homework Helper
Messages
8,923
Reaction score
675
number of draws versus odds to get 6 of 72 items

update - changing the problem statement:

You have a jar filled with 66 white, and 6 unique balls: 1 red, 1 blue, 1 green, 1 purple, 1 yellow, and 1 cyan ball. You draw the balls one at a time and return them each time, recording what you've drawn.

What is the average number of draws before you see all 6 unique colored balls at least once?

Using a program to test this, it seems that about 176 draws are needed.

I could modify the program to determine the average success rate versus number of draws to get the answer to the original problem statement, but what I really wanted was the average number of draws for success. I could probably do a standard deviation on this, but that's not really needed either.
 
Last edited:
Mathematics news on Phys.org
If we get to pick the balls 6 at a time and we would only have 1 time to pick, there is only 1 set out of Combinations of 6 out 72 that will net us the winner.

If we had a 12 sided dice and we want to roll for a specific number an average of 50% of the time it would be
(12^n - 11^n) / 12^n = 0.5 , where n is the total number of dicerolls.
In essence, we have to roll that gazillion sided dice an N times so that we would get that 1 specific result an average of 50% of the time.

Total combinations are
156 238 908 so call that A
[A^n - (A-1)^n] / A^n = 0.5 , solve for N somehow and I imagine that would be the answer.

I think n = ln(0.5) / ln[(A-1)/(A)] , which is like 9.9021 * 10^7 rolls, sounds kind of tedious.
 
Last edited:
With the change to the original problem statement, it seems the average number of draws to see at least one of each of 6 unique balls is about 176 draws.
 
Last edited:
The probability of getting a unique ball on the first draw is 6/72. Therefore the expected number of draws needed to obtain the first unique ball is 72/6. Now, the probability of getting the second unique ball on the next draw is 5/72, so the expected number of draws to get the second unique ball is 72/5. Continuing this reasoning, the total expected number of draws to get all the unique balls is:

72/6 + 72/5 + 72/4 + 72/3 + 72/2 + 72/1 = 176.4
 
davidmoore63@y said:
72/6 + 72/5 + 72/4 + 72/3 + 72/2 + 72/1 = 176.4
I also thought of this same approach, but I wasn't sure if that approach wasn't missing something. Since the program output matched the results (about 176.36), I assume it's probably ok.

Originally I was trying to figure out the number of draws versus chance of success, but realized that just getting an average number of draws would be good enough. As mentioned, I could modify the program to get a distribution curve, but just knowing the average is good enough.
 
The same technique gets you the distribution quite easily (modulo doing actual mathematics). If you can calculate the random variable Xk which is the number of draws required to find one of k unique objects out of 66 of them, then the full distribution to find all six balls is simply
X1+X2+X3+X4+X5+X6

with all six of the random variables being independent.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top