ODE Methods for Physicists (related question)

  • Thread starter Thread starter profgabs05
  • Start date Start date
  • Tags Tags
    Ode Physicists
Click For Summary
The discussion focuses on solving the ordinary differential equation (ODE) $$\frac{1}{v^3}\frac{dv}{dt}=-\frac{1}{2}\frac{dv^{-2}}{dt}$$ and requests a working guide for this equation. An integrating factor is suggested as a method for solving the ODE. Additionally, it is noted that aerodynamic force is related to the square of the velocity rather than the cube. The conversation emphasizes the need for clarity in the application of ODE methods in physics. Understanding these concepts is crucial for accurate modeling in dynamics.
profgabs05
Messages
4
Reaction score
2
Homework Statement
A mass 𝑚 is accelerated by a time-varying force 𝛼 𝑒𝑥𝑝(−𝛽𝑡)𝑣3, where v is its velocity. It also experiences a resistive force 𝜂𝑣, where 𝜂 is a constant, owing to its motion through the air. The equation of motion of the mass is therefore
𝑚𝑑𝑣/𝑑𝑡= 𝛼 𝑒𝑥𝑝(−𝛽𝑡)𝑣^3 − 𝜂𝑣.
Find an expression for the velocity v of the mass as a function of time, given that it has an initial velocity 𝑣0
Relevant Equations
𝑚𝑑𝑣/𝑑𝑡= 𝛼 𝑒𝑥𝑝(−𝛽𝑡)𝑣^3 − 𝜂𝑣.
solution 1.png
 

Attachments

  • exam 1.png
    exam 1.png
    10.5 KB · Views: 161
Physics news on Phys.org
$$\frac{1}{v^3}\frac{dv}{dt}=-\frac{1}{2}\frac{dv^{-2}}{dt}$$
 
Please can i get a working guide to this answer
Chestermiller said:
$$\frac{1}{v^3}\frac{dv}{dt}=-\frac{1}{2}\frac{dv^{-2}}{dt}$$
Please can i get a working guide to this answer?
 
profgabs05 said:
Please can i get a working guide to this answer
Please can i get a working guide to this answer?
$$\frac{dx^n}{dx}=nx^{n-1}$$
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
21
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
3K
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
1K