Olympiad dynamics problem with 3 masses and a pulley

Click For Summary

Homework Help Overview

The discussion revolves around a dynamics problem involving three masses connected by ropes over a pulley system. The original poster describes a scenario where two 1 kg masses are connected by an inextensible rope over a frictionless pulley, with a third mass also connected to the system. The main inquiry focuses on the behavior of the third mass in relation to the forces acting on the first two masses.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the implications of the inextensibility of the rope and how it affects the accelerations of the masses. Questions arise about the nature of the forces acting on mass 3 and whether it experiences the sum or average of the forces acting on the other two masses. There is also a focus on the conditions of the problem, such as whether the pulley is fixed or moving.

Discussion Status

Several participants have provided insights and suggestions regarding the setup and equations involved. There is an ongoing exploration of the implications of different mass configurations and the effects on the system's center of mass. While some guidance has been offered, there is no explicit consensus on the final interpretation or solution.

Contextual Notes

Participants note the absence of the original problem statement, which may affect the clarity of the discussion. The context of the problem is considered to be in a frictionless environment, possibly in outer space, which raises questions about gravitational effects and the dynamics of the system.

Glenn G
Messages
113
Reaction score
12
Homework Statement
Mechanics question, olympiad style
Relevant Equations
f = ma
1649071599346.png

Hello all, this is an adaptation of a question i saw some time ago (can't find the original now). There are two forces acting on two masses both 1kg. The masses are joined by an inextendable rope and going over a frictionless pulley of negigible mass. In blue I have written in some working out to show that IF the pulley was tethered to a wall (say) the difference in accelerations of the two masses was the same as the difference in the two forces SO as I'd imagine if force f1 was larger than f2 then m1 would be accelerating to the right and m2 would be accelerating to the left. IN this situation imagine this was in outer space where everything is free to move AND in this case the pulley is attached to a third mass m3 via another rope.

The main question IS what is happening to mass 3? Clearly there must be a tension force that m3 is experiencing causing it to accelerate. Does m3 experience the sum of the two forces (f1 + f2) OR the average of the two forces (f1 + f2)/2 and of course everything is connected together and so if the acceleration of m3 is greater than m1 or m2 then it is going to smash into the pulley but if it's acceleration is less than that of either m1 or m2 then it is going to lag behind BUT if the cables can't extend then this can't happen. My guess is that m3 has to have the same acceleration as the larger acceleration out of m1 and m2. If m1 and m2 have different accelerations then that doesn't bother me as the pulley can rotate so the cable either side of the pulley can change length (initially).

ANYWAY I have realized that my mechanics is lacking here and would appreciate help with this analysis please.

cheers,
Glenn.

ps in blue are bits of analysis that I think would be true if the pulley was tethered not sure how this all applies IF everything is dynamic and in 'outer space'.
 
Last edited by a moderator:
Physics news on Phys.org
You need to reconsider your equations. First of all I would not substitute m = 1 kg in the equations. Just leave it as a symbol and you can put in the numbers at the very end. This makes the equations less confusing to the reader. More importantly, you have not used the fact that the rope is inextensible. Let ##x_1## be the length of the rope from ##m_1## to the pulley, ##x_2## be the length of the rope from ##m_2## to the pulley, and ##L## the total length of the rope. Then, ##L=x_1+x_2=\text{constant}.## Now if you take second derivatives, you get ##\ddot {x}_1+\ddot {x}_2=0##.

Note that these are not the accelerations ##a_1## and ##a_2## because the entire assembly of three masses accelerates so that its center of mass has acceleration ##A_{cm}=\dfrac{f_1+f_2}{m_1+m_2+m_3}.## I suggest that you find ##a_1## and ##a_2## as if mass ##m_3## were free to move.
 
Last edited:
  • Like
Likes   Reactions: bob012345 and Lnewqban
What is the tatement of the problem? And what are the conditions? Is the pulley fixed or is moving? Is this a view from the top of a horizontal setup?
 
nasu said:
What is the tatement of the problem? And what are the conditions? Is the pulley fixed or is moving? Is this a view from the top of a horizontal setup?
According to OP,
Glenn G said:
##\dots~## this is an adaptation of a question i saw some time ago (can't find the original now).
which I interpret to mean that the original question is unavailable and that what we have here is a reconstruction from OP's memory. I would assume that gravity is not an issue in this case, i.e. that the assembly is on a horizontal frictionless surface or in free space and constrained to move in one dimension..
 
He may not remember the original question but if he attempted a solution he should have a clear picture of what he is trying to solve. It may not be identical to the lost original but at least he should state what problem he is trying to solve.
 
I assumed one is looking for the accelerations of the three masses given the pulling forces f1 and f2. It doesn't really matter because OP's main question is not what the initial Olympiad problem asked but,
Glenn G said:
The main question IS what is happening to mass 3?
So I think that question can be answered if one finds the acceleration of each mass given the external pulling forces f1 and f2.
 
I remember this problem from my Engineering Mechanics course. The root pulley does not move for the branch pulley having weights of 10 & 15 if the other side is 24 - which is completely unintuitive!
 
swampwiz said:
I remember this problem from my Engineering Mechanics course. The root pulley does not move for the branch pulley having weights of 10 & 15 if the other side is 24 - which is completely unintuitive!
Can you explain which is the "root" pulley and which is the "branch" pulley. The hand drawn picture in post #1 shows only one pulley.
 
kuruman said:
Can you explain which is the "root" pulley and which is the "branch" pulley. The hand drawn picture in post #1 shows only one pulley.
My bad, this is not exactly the same problem - the one I am thinking about has instead of the mass on the left a pulley with a mass hanging. The new pulley would be the root pulley, while the existing one would be the branch.
 
  • #10
kuruman said:
More importantly, you have not used the fact that the rope is inextensible. Let x1 be the length of the rope from m1 to the pulley, x2 be the length of the rope from m2 to the pulley, and L the total length of the rope. Then, L=x1+x2=constant. Now if you take second derivatives, you get x¨1+x¨2=0.
I would not use these coordinates because the pulley is not fixed. Because of that, if you introduce coordinates like this, then ##\ddot x_i## will not be the acceleration of mass ##i## unless the pulley does not accelerate (which it will unless ##m_3## is infinite). Instead, I would use ##x_i## as the position of the masses in an inertial frame. This of course means that all three accelerations will form part of the string equation. Using that and a few FBDs, OP should be able to obtain sufficient information to solve the problem.
 
  • #11
Orodruin said:
I would not use these coordinates because the pulley is not fixed.
When I sat down to solve this problem I used coordinates as you suggested for the exact same reasons. I was only trying to direct OP to the correct way of thinking about the constraint of the inextensible rope.
 
  • Like
Likes   Reactions: bob012345 and Orodruin
  • #12
Correct me if I'm wrong but ...

Because ##m_1=m_2##, from the symmetry we can tell that the system’s centre of mass is a constant distance from ##m_3##.

This means ##m_3##'s acceleration is the same as that of the system's centre of mass (as already calculated by @kuruman in Post #2).
 
  • Like
Likes   Reactions: bob012345
  • #13
Steve4Physics said:
Correct me if I'm wrong but ...

Because ##m_1=m_2##, from the symmetry we can tell that the system’s centre of mass is a constant distance from ##m_3##.

This means ##m_3##'s acceleration is the same as that of the system's centre of mass (as already calculated by @kuruman in Post #2).
You're not wrong. However, the general case with different masses is at least as interesting.
 
  • #14
Orodruin said:
You're not wrong. However, the general case with different masses is at least as interesting.
Yes, the general case provides a nice problem.

I suspect that the original question (with ##m_1=m_2##) was written by design, so a quick solution was available in a time-limited competition.
 
  • #15
Steve4Physics said:
Yes, the general case provides a nice problem.

I suspect that the original question (with ##m_1=m_2##) was written by design, so a quick solution was available in a time-limited competition.
It is also a good sanity check to verify that the acceleration of ##m_3## indeed becomes that of the CoM when ##m_1 = m_2## even in the general expression.

Edit: Other good sanity checks include sending one mass to infinity - effectively putting its acceleration to zero by hand.
 
  • #16
An interesting variant in the case of different masses is to ask, "what should the ratio ##f_2/f_1## be so that all three masses have the same acceleration?

##\dfrac{f_2}{f_1}=\dfrac{2m_2+m_3}{2m_1+m_3}##
 
  • Like
Likes   Reactions: bob012345
  • #17
It is interesting to note the general solution is that of a fixed pulley if ##m_3 →∞## and also the tension in the rope goes to 0 as ##m_3 →0## i.e. the masses act independently.
 
  • #18
bob012345 said:
It is interesting to note the general solution is that of a fixed pulley if m3→∞
I mentioned this in the edit of #15. Sending any of the masses to infinity will effectively send the acceleration of that mass to zero. If doing it to mass 1 or 2, you obtain what is essentially a system with a rope fixed in one end attached to a pulley and a mass in the opposite end. If you fix mass 3 you get a fixed pulley.

bob012345 said:
also the tension in the rope goes to 0 as m3→0 i.e. the masses act independently.
This also forces one to consider the applicability of results. The masses act independently - until the distance between the masses (plus half the circumference of the pulley) reaches the length of the rope.
 
  • Like
Likes   Reactions: bob012345

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
25
Views
4K
  • · Replies 102 ·
4
Replies
102
Views
8K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
8
Views
10K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 97 ·
4
Replies
97
Views
17K
  • · Replies 3 ·
Replies
3
Views
2K