MHB Olympiad Inequality Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be non-negative real numbers such that $a+b+c=1$.

Prove that $$\sum_{cyclic}\sqrt{4a+1} \ge \sqrt{5}+2$$.
 
Mathematics news on Phys.org
To avoid being repetitive, the symbol $\sum$ will denote a cyclic sum.

Observe that
$$
S(a,b,c) = \sum \sqrt{4a+1} = 3 + \sum \left(\sqrt{4a+1} - 1 \right)\,.
$$

The reason we are interested in substracting $1$ is because
$$
\sqrt{4a+1} - 1 = \frac{4a }{\sqrt{4a+1} + 1 }\,,
$$
and here the function $f(x) = \frac{4}{\sqrt{4x+1} + 1 }$ is convex (in preparation for Jensen's inequality), unlike $x\mapsto \sqrt{4x+1}$ (hence the transformation).

Important. Now our target inequality $S(a,b,c)\geq \sqrt{5}+2$ reads $ \sum a f(a) \geq \sqrt{5} -1$.

Since we know $f$ to be convex and $\sum a = 1$, Jensen's inequality now applies and we deduce
$$
\sum a f(a) \geq f(\sum a^2)\,.
$$

Here $\sum a^2$ is not a constant, but $f$ is strictly decreasing. Observe then that $a\geq a^2$ (similarly for $b$ and $c$) because $a,b,c\geq 0$ and $\sum a = 1$ imply $a,b,c\in [0,1]$. Therefore $1\geq \sum a \geq \sum a^2$ $(*)$, hence we get
$$
\sum a f(a) \geq f(\sum a^2) \geq f(1) = \frac{4}{\sqrt{5}+1} = \sqrt{5}-1\,,
$$
as desired.

$(*)$ equality here can hold if and only if $\{a,b,c\} = \{0,1\}$, meaning that one variable equals $1$ and the rest $0$.
 
Last edited by a moderator:
Awesome, PaulRS! And thanks for participating!

Here is the solution of other that I wanted to share with MHB:
First, note that

$\sqrt{4a+1}+\sqrt{4b+1}\ge 1+\sqrt{4(a+b)+1}$

since

$(\sqrt{4a+1}+\sqrt{4b+1})^2\ge (1+\sqrt{4(a+b)+1})^2$

$4a+1+2\sqrt{4a+1}\sqrt{4b+1}+4b+1\ge 1+2\sqrt{4(a+b)+1}+4(a+b)+1$

$\sqrt{4a+1}\sqrt{4b+1}\ge \sqrt{4(a+b)+1}$

$(4a+1)(4b+1)\ge 4(a+b)+1$

$4ab+4(a+b)+1\ge 4(a+b)+1$ is true for $a,\,b,\,c\in [0,\,1]$.

Therefore we get:

$\sqrt{4a+1}+\sqrt{4b+1}\ge 1+\sqrt{4(a+b)+1}$

$\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\ge 1+\sqrt{4(a+b)+1}+\sqrt{4c+1}$

And

$\begin{align*}\sqrt{4(a+b)+1}+\sqrt{4c+1}&\ge 1+\sqrt{4(a+b)+4c+1}\\&=1+\sqrt{4(a+b+c)+1}\\&=1+\sqrt{4(1)+1}\text{since $a+b+c=1$}\\&=1+\sqrt{5}\end{align*}$

Combining all results the proof is then followed.

$\begin{align*}\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}&\ge 1+\sqrt{4(a+b)+1}+\sqrt{4c+1}\\&\ge 1+1+\sqrt{5}\\&=2+\sqrt{5}\,\,\,\text{Q.E.D.}\end{align*}$

Equality holds when $(a,\,b,\,c)=(0,\,0,\,1)$ and its permutation.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top