Olympiad Inequality Challenge

Click For Summary
SUMMARY

The Olympiad Inequality Challenge focuses on proving that for non-negative real numbers \(a\), \(b\), and \(c\) such that \(a+b+c=1\), the inequality \(\sum_{cyclic}\sqrt{4a+1} \ge \sqrt{5}+2\) holds true. Participants, including PaulRS, contributed insights and solutions to this mathematical problem. The discussion emphasizes the importance of cyclic sums and the application of inequalities in mathematical proofs.

PREREQUISITES
  • Understanding of cyclic sums in inequalities
  • Familiarity with non-negative real numbers
  • Basic knowledge of mathematical proofs and inequalities
  • Experience with Olympiad-level mathematics
NEXT STEPS
  • Study the properties of cyclic sums in inequalities
  • Explore advanced techniques in proving inequalities
  • Learn about the Cauchy-Schwarz inequality and its applications
  • Investigate other Olympiad problems involving non-negative variables
USEFUL FOR

Mathematics enthusiasts, Olympiad participants, and educators looking to deepen their understanding of inequalities and cyclic sums in mathematical proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be non-negative real numbers such that $a+b+c=1$.

Prove that $$\sum_{cyclic}\sqrt{4a+1} \ge \sqrt{5}+2$$.
 
Mathematics news on Phys.org
To avoid being repetitive, the symbol $\sum$ will denote a cyclic sum.

Observe that
$$
S(a,b,c) = \sum \sqrt{4a+1} = 3 + \sum \left(\sqrt{4a+1} - 1 \right)\,.
$$

The reason we are interested in substracting $1$ is because
$$
\sqrt{4a+1} - 1 = \frac{4a }{\sqrt{4a+1} + 1 }\,,
$$
and here the function $f(x) = \frac{4}{\sqrt{4x+1} + 1 }$ is convex (in preparation for Jensen's inequality), unlike $x\mapsto \sqrt{4x+1}$ (hence the transformation).

Important. Now our target inequality $S(a,b,c)\geq \sqrt{5}+2$ reads $ \sum a f(a) \geq \sqrt{5} -1$.

Since we know $f$ to be convex and $\sum a = 1$, Jensen's inequality now applies and we deduce
$$
\sum a f(a) \geq f(\sum a^2)\,.
$$

Here $\sum a^2$ is not a constant, but $f$ is strictly decreasing. Observe then that $a\geq a^2$ (similarly for $b$ and $c$) because $a,b,c\geq 0$ and $\sum a = 1$ imply $a,b,c\in [0,1]$. Therefore $1\geq \sum a \geq \sum a^2$ $(*)$, hence we get
$$
\sum a f(a) \geq f(\sum a^2) \geq f(1) = \frac{4}{\sqrt{5}+1} = \sqrt{5}-1\,,
$$
as desired.

$(*)$ equality here can hold if and only if $\{a,b,c\} = \{0,1\}$, meaning that one variable equals $1$ and the rest $0$.
 
Last edited by a moderator:
Awesome, PaulRS! And thanks for participating!

Here is the solution of other that I wanted to share with MHB:
First, note that

$\sqrt{4a+1}+\sqrt{4b+1}\ge 1+\sqrt{4(a+b)+1}$

since

$(\sqrt{4a+1}+\sqrt{4b+1})^2\ge (1+\sqrt{4(a+b)+1})^2$

$4a+1+2\sqrt{4a+1}\sqrt{4b+1}+4b+1\ge 1+2\sqrt{4(a+b)+1}+4(a+b)+1$

$\sqrt{4a+1}\sqrt{4b+1}\ge \sqrt{4(a+b)+1}$

$(4a+1)(4b+1)\ge 4(a+b)+1$

$4ab+4(a+b)+1\ge 4(a+b)+1$ is true for $a,\,b,\,c\in [0,\,1]$.

Therefore we get:

$\sqrt{4a+1}+\sqrt{4b+1}\ge 1+\sqrt{4(a+b)+1}$

$\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\ge 1+\sqrt{4(a+b)+1}+\sqrt{4c+1}$

And

$\begin{align*}\sqrt{4(a+b)+1}+\sqrt{4c+1}&\ge 1+\sqrt{4(a+b)+4c+1}\\&=1+\sqrt{4(a+b+c)+1}\\&=1+\sqrt{4(1)+1}\text{since $a+b+c=1$}\\&=1+\sqrt{5}\end{align*}$

Combining all results the proof is then followed.

$\begin{align*}\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}&\ge 1+\sqrt{4(a+b)+1}+\sqrt{4c+1}\\&\ge 1+1+\sqrt{5}\\&=2+\sqrt{5}\,\,\,\text{Q.E.D.}\end{align*}$

Equality holds when $(a,\,b,\,c)=(0,\,0,\,1)$ and its permutation.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
936