71GA
- 208
- 0
I did a Fourier transform of a gaussian function ##\scriptsize \mathcal{G}(k) = A \exp\left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2}\right]## and derived a result ##\sigma_k \sigma_x = 1## which is the same they get on http://www4.ncsu.edu/~franzen/public_html/CH795Z/math/ft/gaussian.html. Here is a procedure i used described in 2 steps:
1 st) I did the Fourier transform of the Gaussian:
<br /> \scriptsize<br /> \begin{split}<br /> \mathcal{F}(x) &= \int\limits_{-\infty}^{\infty} \mathcal{G}(k) e^{ikx} \, \textrm{d} k = \int\limits_{-\infty}^{\infty} A \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2}\right] e^{ikx}\, \textrm{d} k = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2} \right] e^{ikx}\, \textrm{d} k =\\<br /> &= A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{i(m+k_0)x}\, \textrm{d} m = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx} e^{ik_0x}\, \textrm{d} m =\\<br /> &= A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx}\, \textrm{d} m = A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x} \sqrt{2} {\sigma_k} \textrm{d} u = \\<br /> &=\sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x}\, \mathrm{d} u = \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 + i u \sqrt{2} {\sigma_k} x \right]\, \mathrm{d} u =\\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 - \frac{i^2 {\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u =\\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 + \frac{{\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u = \\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} e^{-z^2} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\, \mathrm{d} z = \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \underbrace{\int\limits_{-\infty}^{\infty} e^{-z^2} \, \mathrm{d} z}_{\text{Gauss integral}}=\\ <br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \sqrt{\pi}\\<br /> \mathcal{F} (x)&= \sqrt{2\pi} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\\<br /> \end{split}<br />
2nd) I did some modifications to get the desired result:
It is said on Wikipedia that the Gauss will be normalized only if ##\scriptsize A=1 /(\sqrt{2 \pi} \sigma_k)##. I used this on ##\mathcal{F}(x)## and got a result which corresponds with a result on Wikipedia - read chapter "Fourier transform and characteristic function", so i think it must be ok but please confirm:
<br /> \mathcal{F} (x)= e^{ik_0x} e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
I used a centralized Gauss whose mean value is ##\scriptsize k_0=0## and got:
<br /> \mathcal{F} (x)= e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
Which can be rewritten as :
<br /> \mathcal{F} (x)= e^{\frac{x^2 }{2 \left(1/\sigma_k \right)^2}}\\<br />
And i can see that:
<br /> \begin{split}<br /> &~~1/\sigma_k = \sigma_x\\<br /> &\boxed{\sigma_k \sigma_x = 1}<br /> \end{split}<br />
Could you please tell me what is this that i just derived and tell me how can i continue to get (derive) Heisenberg uncertainty principle ##\scriptsize \Delta x \Delta p = \frac{\hbar}{2}##? I am kind of newbie with Dirac notation so take it easy on me please.
1 st) I did the Fourier transform of the Gaussian:
<br /> \scriptsize<br /> \begin{split}<br /> \mathcal{F}(x) &= \int\limits_{-\infty}^{\infty} \mathcal{G}(k) e^{ikx} \, \textrm{d} k = \int\limits_{-\infty}^{\infty} A \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2}\right] e^{ikx}\, \textrm{d} k = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2} \right] e^{ikx}\, \textrm{d} k =\\<br /> &= A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{i(m+k_0)x}\, \textrm{d} m = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx} e^{ik_0x}\, \textrm{d} m =\\<br /> &= A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx}\, \textrm{d} m = A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x} \sqrt{2} {\sigma_k} \textrm{d} u = \\<br /> &=\sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x}\, \mathrm{d} u = \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 + i u \sqrt{2} {\sigma_k} x \right]\, \mathrm{d} u =\\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 - \frac{i^2 {\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u =\\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 + \frac{{\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u = \\<br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} e^{-z^2} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\, \mathrm{d} z = \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \underbrace{\int\limits_{-\infty}^{\infty} e^{-z^2} \, \mathrm{d} z}_{\text{Gauss integral}}=\\ <br /> &= \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \sqrt{\pi}\\<br /> \mathcal{F} (x)&= \sqrt{2\pi} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\\<br /> \end{split}<br />
2nd) I did some modifications to get the desired result:
It is said on Wikipedia that the Gauss will be normalized only if ##\scriptsize A=1 /(\sqrt{2 \pi} \sigma_k)##. I used this on ##\mathcal{F}(x)## and got a result which corresponds with a result on Wikipedia - read chapter "Fourier transform and characteristic function", so i think it must be ok but please confirm:
<br /> \mathcal{F} (x)= e^{ik_0x} e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
I used a centralized Gauss whose mean value is ##\scriptsize k_0=0## and got:
<br /> \mathcal{F} (x)= e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
Which can be rewritten as :
<br /> \mathcal{F} (x)= e^{\frac{x^2 }{2 \left(1/\sigma_k \right)^2}}\\<br />
And i can see that:
<br /> \begin{split}<br /> &~~1/\sigma_k = \sigma_x\\<br /> &\boxed{\sigma_k \sigma_x = 1}<br /> \end{split}<br />
Could you please tell me what is this that i just derived and tell me how can i continue to get (derive) Heisenberg uncertainty principle ##\scriptsize \Delta x \Delta p = \frac{\hbar}{2}##? I am kind of newbie with Dirac notation so take it easy on me please.