One dimensional infinite potential well problem

AI Thread Summary
The discussion centers on solving a quantum mechanics problem involving a particle in a one-dimensional infinite potential well, where the potential is suddenly changed. The original wave function remains unchanged, and the task is to find the probabilities of the particle being in the first four excited states of the new potential. To do this, the overlap integral between the ground state wave function and the excited states must be computed, followed by taking the modulus squared of the amplitude to determine the probabilities. Clarifications are made that the overlap integral is not a convolution but an integral of the conjugate of the wave functions over their domain. This method is confirmed as a standard approach for such problems in quantum mechanics.
krishnamraju
Messages
1
Reaction score
0
hi,
I am not getting idea to solve below problem
A particle of mass m is in a one-dimensional ,rectangular potential well for which V(x)=0 for 0<x< L and V(x)=infinite elsewhere. The particle is intially prepared in the ground state ψ1 with eigen energy E1. Then , at time t=0, the potential is very rapidly changed so that the original wave function remains the same but V(x)=0 for 0<x<2L and V(x)=infinite elsewhere.Find the probability that the particle is in the first,second,third and fourth excited state of the system when t ≥ 0.
could you help me please.
 
Physics news on Phys.org
When the potential is changed suddenly the original wavefunction stays the same. To compute the amplitudes of being in any other state then just compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state. To get the probability find the modulus squared of the amplitude.
 
Dick said:
When the potential is changed suddenly the original wavefunction stays the same. To compute the amplitudes of being in any other state then just compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state. To get the probability find the modulus squared of the amplitude.


the |phi> is the excited states in the new potential, right??
 
tnho said:
the |phi> is the excited states in the new potential, right??

Sure.
 
Dick said:
compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state.
Two quick questions:

1. Is this 'overlap integral' the convolution of the wavefunctions in each potential?

2. Is taking this 'overlap integral' in such a situation generally the way to tackle problems such as this?
 
White Ink said:
Two quick questions:

1. Is this 'overlap integral' the convolution of the wavefunctions in each potential?

2. Is taking this 'overlap integral' in such a situation generally the way to tackle problems such as this?

It's not a 'convolution'. That's something else. It's just the integral conjugate(psi1(x))*psi2(x) over the domain of the wavefunctions. And yes, if everything is properly normalized that's all you have to do.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top