One dimensional infinite potential well problem

krishnamraju
Messages
1
Reaction score
0
hi,
I am not getting idea to solve below problem
A particle of mass m is in a one-dimensional ,rectangular potential well for which V(x)=0 for 0<x< L and V(x)=infinite elsewhere. The particle is intially prepared in the ground state ψ1 with eigen energy E1. Then , at time t=0, the potential is very rapidly changed so that the original wave function remains the same but V(x)=0 for 0<x<2L and V(x)=infinite elsewhere.Find the probability that the particle is in the first,second,third and fourth excited state of the system when t ≥ 0.
could you help me please.
 
Physics news on Phys.org
When the potential is changed suddenly the original wavefunction stays the same. To compute the amplitudes of being in any other state then just compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state. To get the probability find the modulus squared of the amplitude.
 
Dick said:
When the potential is changed suddenly the original wavefunction stays the same. To compute the amplitudes of being in any other state then just compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state. To get the probability find the modulus squared of the amplitude.


the |phi> is the excited states in the new potential, right??
 
tnho said:
the |phi> is the excited states in the new potential, right??

Sure.
 
Dick said:
compute the overlap integral <psi1|phi> where phi is the wavefunction of the excited state.
Two quick questions:

1. Is this 'overlap integral' the convolution of the wavefunctions in each potential?

2. Is taking this 'overlap integral' in such a situation generally the way to tackle problems such as this?
 
White Ink said:
Two quick questions:

1. Is this 'overlap integral' the convolution of the wavefunctions in each potential?

2. Is taking this 'overlap integral' in such a situation generally the way to tackle problems such as this?

It's not a 'convolution'. That's something else. It's just the integral conjugate(psi1(x))*psi2(x) over the domain of the wavefunctions. And yes, if everything is properly normalized that's all you have to do.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top