One-dimensional wave equation with non-constant speed

j5rp
Messages
4
Reaction score
0

Homework Statement



The cross-section of a long string (string along the x axis) is not constant, but it changes wit the coordinate x sinusoidally. Explore how a wave, caused with a short stroke, spreads through the string.


Homework Equations



Relevant is the one-dimensional wave equation, where the wave speed c is not a constant (i.e. c=√T/ρS, where T is the string tension, ρ is the density of the string, and S is the cross-section).

The cross-section:
S=S1+S2*Sin[x]


The Attempt at a Solution



I thought about using Laplace transformation so that I get an ordinary differential equation. I also have trouble with the initial conditions, I don't know what is meant by short stroke, or if it really matters.
 
Physics news on Phys.org
I interpret 'short stroke' as simply meaning it is a small perturbation.
Can you write down the wave equation?
 
The wave equation:

(∂^2 u)/(∂t)^2 = c^2 (∂^2 u)/(∂x)^2,

where u is displacement of the string and c is the wave speed. c is not a constant, because c^2 = T/S, where T is the string tension and S is the cross-sectional area and is dependant on x. S[x]=S1+S2*Sin[x].

(Sorry about the formatting. The ∂ stands for derivative.)
 
j5rp said:
The wave equation:

(∂^2 u)/(∂t)^2 = c^2 (∂^2 u)/(∂x)^2,

where u is displacement of the string and c is the wave speed. c is not a constant, because c^2 = T/S, where T is the string tension and S is the cross-sectional area and is dependant on x. S[x]=S1+S2*Sin[x].

(Sorry about the formatting. The ∂ stands for derivative.)

In LaTeX: ##\frac{\partial^2 u}{\partial t^2} = c^2\frac{\partial^2 u}{\partial x^2}##.
So, plugging in the expression for c(x), can you apply e.g. separation of variables?
 
So, plugging in the expression for c(x), can you apply e.g. separation of variables?

I think not, because the initial conditions are probably going to be in the form u(t=0,x)=f(x) and \frac{∂u}{∂t}(t=0,x)=g(x), because it is an infinite string (no boundary conditions). But if I we separate variables (i.e. u(x,t)=X(x)*T(t)), we have to put a single value and not a function for initial conditions (example: X(0)=value, instead of u(t=0,x)= function).

I was wandering if d'Alembert's formula applies if speed of propagation (also c in the link) is not constant?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top