Maximizing Triangle Area with Given Adjacent Sides

  • Thread starter Thread starter Saterial
  • Start date Start date
  • Tags Tags
    Optimization
Saterial
Messages
54
Reaction score
0

Homework Statement


A triangle has adjacent sides 4 cm and 6 cm. Find the angle contained by the sides which maximizes the area.


Homework Equations





The Attempt at a Solution


I'm not going to lie. I have no idea how to start this. I tried using sine law to create a helper equation but that gave me Four unknowns.
 
Physics news on Phys.org
You need an equation that relates area of the triangle to the angle.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top