Solve Optimization Problems | Derivative of T(y) | Maximal/Minimal Area"

  • Thread starter Thread starter shadowman187
  • Start date Start date
  • Tags Tags
    Optimization
shadowman187
Messages
3
Reaction score
0

Homework Statement


look at jpg attachment


Homework Equations



T(y)=(z-y/r)+(sqrt(x^2+y^2)/s)
ac=z
bc=x
dc=y
ab=w
im having trouble taking the derivative of T(y) and how to solve it

on the second one i think there is no maximal area but there is a minimal but not sure how to start it
 

Attachments

  • pg2.jpg
    pg2.jpg
    20.9 KB · Views: 390
Physics news on Phys.org
nevermind i figured them out
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top