LinkMage
- 18
- 0
I have to solve this:
<br /> \lim_{\substack{s\rightarrow 0^+}} s^4 (\frac{1}{2} ln (s) - \frac{1}{8})<br />
Here is what I did so far:
<br /> \lim_{\substack{s\rightarrow 0^+}} \frac{s^4}{\frac{1}{\frac{1}{2} ln (s) - \frac{1}{8}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{4s^3}{\frac{-\frac{1}{2s}}{(\frac{1}{2} ln (s) - \frac{1}{8})^2}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{4s^3}{-\frac{1}{2s (\frac{1}{2} ln (s) - \frac{1}{8})^2}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{12s^2}{\frac{2 (\frac{1}{2} ln (s) - \frac{1}{8})^2 + 2 (\frac{1}{2} ln (s) - \frac{1}{8})} {[2s (\frac{1}{2} ln (s) - \frac{1}{8})^2]^2}} = 0
Is this OK? If not, can someone help me please?
<br /> \lim_{\substack{s\rightarrow 0^+}} s^4 (\frac{1}{2} ln (s) - \frac{1}{8})<br />
Here is what I did so far:
<br /> \lim_{\substack{s\rightarrow 0^+}} \frac{s^4}{\frac{1}{\frac{1}{2} ln (s) - \frac{1}{8}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{4s^3}{\frac{-\frac{1}{2s}}{(\frac{1}{2} ln (s) - \frac{1}{8})^2}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{4s^3}{-\frac{1}{2s (\frac{1}{2} ln (s) - \frac{1}{8})^2}} =
<br /> = \lim_{\substack{s\rightarrow 0^+}} \frac{12s^2}{\frac{2 (\frac{1}{2} ln (s) - \frac{1}{8})^2 + 2 (\frac{1}{2} ln (s) - \frac{1}{8})} {[2s (\frac{1}{2} ln (s) - \frac{1}{8})^2]^2}} = 0
Is this OK? If not, can someone help me please?
Last edited: