Contingency
- 41
- 0
Homework Statement
Find extrema for f\left( x,y,z \right) ={ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 }
under the constraint g\left( x,y,z \right) ={ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }=16
Homework Equations
(1) \nabla f=\lambda \nabla g
(2) g\left( x,y,z \right) ={ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }=16
The Attempt at a Solution
(1)\Rightarrow \left( 3{ x }^{ 2 },3{ y }^{ 2 },3{ z }^{ 2 } \right) =\lambda \left( 2x,2y,2z \right)⇔(3) x=y=z
(3)→(2)\Rightarrow x=y=z=\pm \frac { 4 }{ \sqrt { 3 } }
But subbing in x=y=0, z=4 gives a greater value..
What am I doing wrong?
Last edited: