Calculating Pole Order: Is Infinity Possible?

  • Thread starter Thread starter physics_fun
  • Start date Start date
  • Tags Tags
    Infinity Pole
physics_fun
Messages
28
Reaction score
0
I'm calculating the order of a pole of some function and I'm wondering: is it possible that a pole has order infinity?
 
Physics news on Phys.org
Not in real life. What's the context?
 
I found my mistake. Had to rewrite a sin in a taylor expansion...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top