Ordinary Differential Equations by Tenenbaum and Pollard

Luterinho
Messages
2
Reaction score
0
I am having a hard time understanding the conditions that set a plane to be called a region.

According to definition 2.68, a set in the plane is called a region if it satisfies the following two conditions (p. 14):

1. "Each point of the set is the center of a circle whose entire interior consists of points of the set."

2. "Every two points of the set can be joined by a curve which consists entirely of points of the set."

I am having a hard time understanding the first condition. Can anyone provide an illustration in order to decipher the first condition meaning?

Thank you for help.
 
Physics news on Phys.org
I think the counterpoint to 1 would be a boundary point. On the boundary, any circle you draw ( no matter how small ) will include some points from inside the domain and some outside.
Condition 1 indicates that the region is open. An example might be R2 with 0< x, y< 1. For any point near (0,0) or (1,1) there will exist a value r small enough that you can draw a circle around the point with only members of the region inside.
 
RUber said:
I think the counterpoint to 1 would be a boundary point. On the boundary, any circle you draw ( no matter how small ) will include some points from inside the domain and some outside.
Condition 1 indicates that the region is open. An example might be R2 with 0< x, y< 1. For any point near (0,0) or (1,1) there will exist a value r small enough that you can draw a circle around the point with only members of the region inside.

Thank you.
 
Yes. condition 1 is saying that the set does not contain any of its boundary points. The two sets \{ (x, y)| x^2+ y^2\le 1\} and \{ (x, y)| x^2+ y^2&lt; 1\} have the same boundary: \{(x, y)| x^2+ y^2= 1\}, the circle with radius 1. The first contains that boundary and is a "closed" set. The second does not contain any point of that boundary and is called an "open" set.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top