Orientability of Null Submanifold w/ Boundary - Stokes' Theorem

ifidamas
Messages
3
Reaction score
0
I have this question: Is it possible to define an orientation for a null submanifold with boundary?
In that case, is possible to use Stokes' theorem?
In particular, there is a way to define a volume form on that submanifold?
 
Physics news on Phys.org
Orientability is topological. Volume forms only depend on affine structure. None of these notions are metrical, so it doesn't matter if the metric is degenerate on your submanifold. Stokes' theorem still holds. There is a good discussion of this sort of thing at the end of ch. 2 of the free online version of Carroll, http://arxiv.org/abs/gr-qc/?9712019 .

The only thing to worry about is that if there's curvature and the integrand is nonscalar (e.g., the flux of stress-energy), then this sort of thing fails, because we can't even define unambiguously what it means to add vectors that lie in different tangent spaces.
 
Last edited:
So I can't integrate a 2-form over a 2-submanifold which is a boundary of a nulla 3-submanifold?
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Back
Top