I Orthogonal transformations preserve length

lys04
Messages
144
Reaction score
5
Let Q be an orthogonal matrix, and I want to transform (p,q), the magnitude of this vector is sqrt(p^2+q^2) using pythag. T((p,q))=pv1+qv_2 where v1 and v2 are the column vectors of Q. Since the column vectors of Q have magnitude of 1, this means pv1 has magnitude of p and qv2 has magnitude of q. v1 and v2 are also perpendicular, using the fact that ||a+b||^2=(a+b).(a+b)=a.(a+b)+b.(a+b)=a.a+a.b+b.a+b.b=a.a+0+0+b.b=||a|^2+||b||^2, so the magnitude of pv1+qv_2 is also sqrt(p^2+q^2). Hence length is preserved?

Also does this explain why orthogonal transformations have eigenvalues of magnitude of 1?
 
Last edited:
Physics news on Phys.org
By definition, an orthogonal matrix satisfies A^T = A^{-1}. An immediate consequence is that for any v,
\|Av\|^2 = (Av) \cdot (Av) = (Av)^T(Av) = v^TA^TAv = v^Tv = v \cdot v = \|v\|^2 so that \|Av\| = \|v\|. If v is an eigenvector with eigenvalue \lambda, then <br /> \|v\| = \|Av\| = |\lambda| \|v\| \quad\Rightarrow\quad |\lambda| = 1.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top