Orthonormal basis for subsets of C^3

gysush
Messages
22
Reaction score
0
We want to find a basis for W and W_perpendicular for W=span({(i,0,1)}) =Span({w1}) in C^3

a vector x =(a,b,c) in W_perp satisfies <w1,x> = 0 => ai + c = 0 => c=-ai
Thus a vector x in W_perp is x = (a,b,-ai)

So an orthonormal basis in W would be simply w1/norm(w1) ...but the norm(w1)=0 (i^2 + 1 = 0)

What am I missing here? Does a basis for W satisfy that it has zero length? Thus it is just the origin. Then would all of C^3 be W_perp?
 
Physics news on Phys.org
The complex inner product norm <x,y> is defined by (x*)^T y. You are forgetting the complex conjugate.
 
Ahh...I forgot to remember that a norm for F=C requires we take the complex conjugate of the 2nd vector.

You beat me to to it. :-)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top