Oscillation with friction - Analytical mechanics

AI Thread Summary
The discussion revolves around analyzing a damped harmonic oscillator described by the equation m ddot{x} + alpha dot{x} = -kappa x, with a specific condition on the friction parameter. The proposed solution involves expressing the general solution as x(t) = e^(-alpha t / 2m)[A t + B], with constants A and B defined by initial conditions. Feedback suggests verifying the solution by substituting it back into the original equation, indicating that the provided solution may not correctly represent a damped oscillator due to the absence of oscillatory terms. The conversation highlights the critical damping case as a key aspect of the analysis. Overall, the thread emphasizes the importance of validating solutions in analytical mechanics.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, I had those exercises and want to know if they're correct. Also, feedback/tips would be great from you, professionals.

$$A$$

1. Let's consider the oscillator with a friction parameter...

\begin{equation}
m \ddot{x}+\alpha \dot{x}=-\kappa x
\end{equation}
but with
\begin{equation}
\alpha^2=4 m \kappa
\end{equation}
and after inserting, show that the general solution will be like this:
\begin{equation}
x(t)=\mathrm{e}^{-\alpha t / 2 m}[\mathcal{A} t+\mathcal{B}]
\end{equation}
Express A and B constants with the initial coordinates and velocity and analyze.

My solution:\begin{aligned}
&m\ddot{x} + \dot{x}\sqrt{4mk} +kx=0\\
&x(t)=e^{-\frac{\alpha t}{2m}}[\mathcal {A}t+\mathcal{B}]\\
&\\
&\dot{x}(t)=-\frac{\alpha}{2m} e^{-\frac{\alpha t}{2m}} [\mathcal {A}t+\mathcal{B}]+e^{-\frac{\alpha t}{2m}}\mathcal{A}\\
&\ddot{x}(t)=-\frac{4\mathcal{A}\alpha m-\mathcal{A}{\alpha^{2}}t-\mathcal{B}{\alpha^{2}}}{4m^2}e^{-\frac{\alpha t}{2m}}\\
&\\
&x(0)=\mathcal{B}\equiv x_0 \\
&\dot{x}(0)=-\frac{\alpha}{2m} \mathcal{B}+\mathcal{A} = -\frac{\alpha}{2m} x_0 +\mathcal{A} \\
&\\
&\mathcal{A} = \dot{x}_0 + \frac{\alpha}{2m} x_0\\
&\\
&x(t)=e^{-\frac{\alpha t}{2m}}[\dot{x}_0 + \frac{\alpha}{2m} x_0 t+x_0] = e^{-\frac{\alpha t}{2m}}\left[\dot{x}_0 + \left(\frac{\alpha}{2m} t+1\right)x_0\right]\\
\end{aligned}
 
Last edited:
Physics news on Phys.org
NODARman said:
Homework Statement: .
Relevant Equations: .

##\dots## and want to know if they're correct.
How about substituting your solution back in the original equation? That's the first thing I would do to verify my solution. Needless to say this doesn't look right because you have a damped harmonic oscillator with no oscillatory term(s) in the equation.
 
kuruman said:
Needless to say this doesn't look right because you have a damped harmonic oscillator with no oscillatory term(s) in the equation.
It should turn out to be the critical damping case.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top