Oscillatory Motion - Determining equation of motion

AI Thread Summary
The discussion centers on determining the equation of motion for a particle attached to a spring, with specific parameters including mass, force constant, and initial conditions. Participants are trying to solve for the phase constant, phi, using the maximum speed and position at time t=0, but are encountering discrepancies in their results. Suggestions include simplifying the velocity function to a cosine form to eliminate the need for phi, making calculations easier. The conversation also highlights the importance of understanding the relationship between potential and kinetic energy in oscillatory motion. Overall, the thread emphasizes the challenges of applying concepts of oscillatory motion in practical problems.
menglish20
Messages
6
Reaction score
0

Homework Statement



A particle with a mass of 0.5 kg is attached to a horizontal spring with a force constant of 50 N/m. At the moment t = 0, the particle has a maximum speed of 20 m/s and is moving to the left.
(a) Determine the particle's equation of motion.
(b) Where in the motion is the potential energy three times the kinetic energy?
(c) Find the minimum time interval required for the particle to move from x=0 to x=1.00m.
(d) Find the length of a simple pendulum with the same period.


Homework Equations


(a)
w=sqrt(k/m)

v_max = Aw

(b)
3(.5*m*w^2*A^2*sin^2(wt+phi))= .5*k*A^2*cos^2(wt+phi)


The Attempt at a Solution



I searched he forums here for the same question and found this thread:
https://www.physicsforums.com/archive/index.php/t-231270.html

I think I understand how to find omega and the maximum velocity (though the signs may be incorrect), but I don't understand how to solve for phi. The only thing I could think of was to set

v=-wAsin(wt+phi) to -20=10*(-2)sin(phi) for t=0.
This returned a phi=3pi/2 or -pi/2, unless I'm doing something wrong.
I also tried to set x(0)=0, so
0=(-2)cos(phi) which results in phi=pi/2.
These answers disagree with what the linked thread found for phi and what my professor's answer had for phi.

I'm just having a hard time understand phi, which seems like such a simple concept. If anyone could steer me in the right direction, I think I could finish this problem. Thanks for any help!
 
Physics news on Phys.org
v=-wAsin(wt+phi) to -20=10*(-2)sin(phi) for t=0.

If -20=10*(-2)sin(phi), then sin(phi)=1, so phi can be pi/2. This is consistent with what you got using x(0)=0.
 
Just a thought: if the speed is maximum as the particle passes through the equilibrium point at t=0, why not make the velocity function a cosine and do away with the phase constant? Integrate once to find the position function (which will then be a sine function, again with no phase constant). Should make life easier.
 
If you're going to do more with oscillators (or waves) I recommend purchasing A. P. French's Vibrations and Waves It's inexpensive -- likely free down-loadable -- there are MIT lectures based on it.

bc
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top