Otto Cycle Engine Homework: Total Work & Efficiency Calculation

AI Thread Summary
The discussion revolves around calculating the total work and efficiency of a six-cylinder Otto-cycle engine with a specified compression ratio and other parameters. Participants express confusion about how to relate work done in one cycle to engine efficiency and the heat exchanged during the process. There are attempts to apply thermodynamic principles, such as the adiabatic process and the ideal gas law, but some participants feel they lack necessary information, particularly regarding the number of moles of gas. Comparisons to Carnot-cycle efficiency are also mentioned, with a noted expectation that the Otto cycle's efficiency should be lower. Overall, the main challenge lies in correctly applying thermodynamic equations to derive the required values.
Recipi
Messages
6
Reaction score
0

Homework Statement



"A car has a six-cylinder Otto-cycle engine with compression ratio r = 10.6.

The diameter of each cylinder is 82.5 mm.

The distance that the piston moves during the compression stroke (see fig. 1) is 86.4 mm.

The initial pressure of the air-fuel mixture (at point a in fig. 2) is 8.50 x 10^4 Pa and the initial temperature is 300K (the same as the outside air).

Assume that 200 J of heat is added to each cylinder in each cycle by the burning petrol and that the gas has CV = 20.5 J.mol/K and γ = 1.40."

RK92bqw.png


(a) By considering the efficiency of the engine, calculate
(i) the total work done in one cycle in each cylinder of the engine, and
(ii) the heat released when the gas is cooled to the temperature of the air outside.

(b) Calculate the volume of the air-fuel mixture at point a in the cycle.

(c) Calculate the pressure, volume, and the temperature of the gas at points b, c, and d in the cycle. In a pV-diagram, show numerical values of p, V and T for each of the four states.

(d) Compare the efficiency of this engine with the efficiency of a Carnot-cycle engine operating between the same maximum and minimum temperatures

The Attempt at a Solution


(a)(i) has me completely baffled. I understand that the work is the area bounded by the two adiabats and the vertical isochors, but I don't see how this is related to the efficiency if η = 1 - r1-γ = 1 - (|QC| / QH).

That relation gives me a value for (a)(ii) of |QC| = QH*r1-γ - 200*10.6-0.4 = 77.8 J, though; is this on the right lines?

(b) I tried to use the relationship for an adiabatic process TVγ-1 = constant, so:
Ta(rV)γ-1 = TbVγ-1
However, the 'V' terms just cancel here. I then considered the ideal gas equation V=nRT/P, but there is no value for the number of moles of working substance.

(c) I think I will be able to do on my own once I am pointed in the right direction for (b); right now I feel like I am missing information I need to be able to do the question, but filling in the first few gaps should help me enough.

(d) Again, once I actually have the value the maximum temperature I can use the Carnot efficiency η = 1 - TC/TH to compare the value of η ≈ 0.611 for this Otto cycle. I suspect it should be lower given the nature of the Carnot engine?

My biggest problem with thermodynamics at the moment is a massive unfamiliarity with many of the key relations between variables; I have a nagging feeling I'm either overlooking the obvious or am unable to find the relationship that would make the questions tractable in my notes.
 
Last edited:
Physics news on Phys.org
I've had more of a look at (a)(i), and I've gotten a bit further, although unless I can use the efficiency to get past the problem I've encountered in my last line, I'm not sure I've done it the way the question wants (if it's right at all)?

8RV2wJY.gif


The issue now seems to be finding Td?

Edit: Okay, I think I got the efficiency into the picture, but the value I come out with seems ridiculous; 1320J of work for 200J heat input seems all kinds of wrong?

PzliSci.gif
 
Last edited:
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top