Overall Power Factor of three motors for transformer voltage drop calculation

Click For Summary
SUMMARY

The discussion focuses on calculating the overall power factor (PF) of three motors connected to a single busbar for transformer voltage drop calculations. The participants clarify that the overall PF cannot be simply averaged; instead, it requires converting each motor's current into rectangular form and summing them. The example provided demonstrates the calculations for Motors A, B, and C, resulting in a total current of 203.59A and an overall PF of 0.829. The method emphasizes the importance of using rectangular coordinates for summation and polar coordinates for multiplication.

PREREQUISITES
  • Understanding of power factor and its significance in electrical systems
  • Knowledge of phasor representation and complex numbers
  • Familiarity with trigonometric functions and their application in electrical calculations
  • Basic principles of electrical circuit analysis, including Kirchhoff's Current Law (KCL)
NEXT STEPS
  • Learn about transformer voltage drop calculations and their implications in electrical design
  • Study the effects of leading and lagging power factors on system performance
  • Explore advanced phasor analysis techniques for complex electrical systems
  • Investigate the use of synchronous motors and their impact on overall power factor
USEFUL FOR

Electrical engineers, power system analysts, and anyone involved in the design and analysis of motor systems and transformer applications will benefit from this discussion.

Physicist3
Messages
103
Reaction score
0
Hi

Suppose I have three motors connected to a single busbar which is fed by a single transformer and suppose that the current into the busbar (i.e. the total current of the transformer secondary) is known. If I wish to calculate the transformer voltage drop the I will obviously need the load power factor. If the power factors of each of the motors is known, can the powerfactor at the transformer secondary (i.e. the overall load powerfactor) be obtained by taking the average of the three motors.

E.g. if Motor A is assumed to have PF of 0.88, Motor B PF = 0.86 & Motor C PF = 0.84, is PF at busbar 0.86?

Many Thanks in advance
 
Engineering news on Phys.org
No.
The whole is equal to the sum of its parts not the average of its parts.

Make each motor current into rectangular form, real amps +jreactive amps ,

and add 'em up.

If this is a homework problem,
teacher probably wants you to solve some simultaneous equations to arrive at the answer.
Use phasors to make it a geometry problem that you can visualize

given only total current and power factor
you can draw a right triangle whose hypotenuse is total current and other two sides are real and imaginary amps.
what three smaller right triangles will add to give that one?

I think that'll work though haven't tried it myself.
Keep us posted?

old jim
 
Hi jim, many thanks for the reply and your advice :).

Considering the following theoretical example, and based upon what you have said, does this look about right:

Motor A: Drawing 55A, PF = 0.88
Motor B: Drawing 62A, PF = 0.79
Motor C: Drawing 87A, PF = 0.82

Motor A:

Φ = cos-1(0.88) = 28.36°

Real current component = I * PF = 55*0.88 = 48.4A
Imaginary Current component = I * Sin(Φ) = 55*Sin(28.36) = 26.13A

Motor A Current is therefore 48.40 + j26.13A

Motor B:

Φ = cos-1(0.79) = 37.81°

Real current component = I * PF = 62*0.79 = 48.98A
Imaginary Current component = I * Sin(Φ) = 62*Sin(37.81) = 38.01A

Motor B Current is therefore 48.98 + j38.01A

Motor C:

Φ = cos-1(0.82) = 34.92°

Real current component = I * PF = 87*0.82 = 71.34A
Imaginary Current component = I * Sin(Φ) = 87*Sin(34.92) = 49.80A

Motor C Current is therefore 71.34 + j49.80A

Total Current

Total current = A+B+C = 48.40+j26.13 + 48.98+j38.01 + 71.34+j49.80 = 168.72+j113.94

Total Current = √(168.722+113.942) = 203.59A

Φ = tan-1(113.94/168.72) = 34.03°

Overall PF of three motor loads = cos(34.03) = 0.829

I hop this is correct as when I calculate the total current using KCL (current into busbar = current leaving busbar etc.) I get the following;

I = 55+62+87 = 204A

which is very close to the total value obtained using real and reactive component method for each motor?

Many Thanks in advance
 
Your method looks perfect
and your orderly presentation is a delight to see.
Please excuse me for not checking the arithmetic in your polar to rectangular conversions , i know you are plenty capable
and i can hardly see the numbers on my slide rule anymore...

That your total current comes out 203.59
versus 204 from just adding them without adjusting for their slightly different phase
is such a small difference that it comes as a bit of a surprise . It would be hard to discern that little bit of difference on my 6" slide rule.

still, that they differ makes the point.
I guess this wasn't homework - surely a textbook author would have chosen currents that made the point more emphatically ?
If you are curious make one motor have a leading PF (synchronous motor can do that)
and see what it does to result

Basic rule of thumb : Add in rectangular co-ordinates, multiply in polar.

Congratulations ! You done good ! I have vicariously enjoyed your success.
and it is really heartwarming to see such orderly work.
Nice job. I bet it felt good.old jim
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 26 ·
Replies
26
Views
5K
Replies
4
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 55 ·
2
Replies
55
Views
9K