The parallel transport equation is(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\frac{d\lambda^{\mu}}{d\tau} = -\Gamma^{\mu}_{\sigma\rho} \frac{dx^{\sigma}}{d\tau} \lambda^{\rho}

[/tex]

If I take the derivative of this with respect to tau, and get

[tex]

\frac{d^2\lambda^{\mu}}{d\tau^2} = -\partial_{\nu}\Gamma^{\mu}_{\sigma\rho}\frac{dx^{\nu}}{d\tau}\frac{dx^{\sigma}}{d\tau} \lambda^{\rho} \;- \;\Gamma^{\mu}_{\sigma\rho}\frac{d^2x^{\sigma}}{d\tau^2}\lambda^{\rho} \;-\; \Gamma^{\mu}_{\sigma\rho}\frac{dx^{\sigma}}{d\tau}\frac{d\lambda^{\rho}}{d\tau}

[/tex]

[tex]

= \Big(-\partial_{\nu}\Gamma^{\mu}_{\sigma\rho} \frac{dx^{\nu}}{d\tau}\frac{dx^{\sigma}}{d\tau} \; - \;\Gamma^{\mu}_{\sigma\rho}\frac{d^2x^{\sigma}}{d\tau^2}\;+\; \Gamma^{\mu}_{\sigma\nu}\Gamma^{\nu}_{\alpha\rho} \frac{dx^{\sigma}}{d\tau}\frac{dx^{\alpha}}{d\tau}\Big)\lambda^{\rho}

[/tex]

and then substitute these into

[tex]

\lambda^{\mu}(\tau) = \lambda^{\mu}(0) \;+\; \tau\frac{d\lambda^{\mu}(0)}{d\tau} \;+\; \frac{1}{2}\tau^2\frac{d^2\lambda^{\mu}(0)}{d\tau^2} \;+\; O(\tau^3}),

[/tex]

have I already done something wrong, or is this a valid way to do parallel transport small distances?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Parallel transport approximation

**Physics Forums | Science Articles, Homework Help, Discussion**