Partial Diff Qn: Int Double Integral of u w.r.t x & y

  • Thread starter Thread starter fredrick08
  • Start date Start date
  • Tags Tags
    Partial
fredrick08
Messages
374
Reaction score
0

Homework Statement



latex(int(int(u, x), y));



Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
fredrick08 said:

Homework Statement



latex(int(int(u, x), y));



Homework Equations





The Attempt at a Solution


You don't give us much to go on...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top