Partial with respect to ln(f(x))

  • Thread starter Thread starter TheBestMilk
  • Start date Start date
  • Tags Tags
    Partial
TheBestMilk
Messages
12
Reaction score
0

Homework Statement


I'm working a problem, and I've come to taking the derivative with respect to ln(x):

\frac{\partial ln(x^{c})}{\partial ln(p_{x})}


Homework Equations



ln(x^{c})=ln(p^{2}_{y}I)+ln(p_{x}+p_{y})-ln(p_{x})-ln(p_{y})


The Attempt at a Solution


I've worked it out, but am not sure how the ln(p_{x}+p_{y}) term would derive with respect to ln(p_{x}). Any help would be great. Thanks!

\frac{\partial ln(x^{c})}{\partial ln(p_{x})} = \frac{\partial}{\partial ln(p_{x})}(ln(p_{x}+p_{y})) - 1
 
Physics news on Phys.org
Probably you can use the chain rule here, finding a convenient "intermediate" variable, e.g.

<br /> \frac{\partial \ln(p_x + p_y)}{\partial \ln(p_x)} = <br /> \frac{\partial \ln(p_x + p_y)}{\partial p_x} \cdot<br /> \frac{\partial p_x}{\partial \ln(p_x)} <br />

looks like I could do it
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top